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Summary

The project was concentrated on development of new methodologies for decision mak-
ing in uncertain environment and relevant applications.

The first part of the project was focused on analytical and discrete optimization ap-
proaches for routing an aircraft in threat environment. The model considered aircraft
trajectory in three-dimensional space. Several threats were studied, including risk of
aircraft detection by radars, sensors, and the risk of being killed by surface to air mis-
siles. The problem of finding aircraft optiral risk trajectory subject to a constraint on
the trajectory length was solved by analytical and discrete optimization approaches.

The second part of the project resulted in general approach to risk management for
the case with uncertainties in distributions. The risk of loss, damage, or failure was
measured by the Conditional Value-at-Risk (CVaR) measure. As a function of decision
variables, CVaR is convex, and therefore can be efficiently controlled/optimized using
convex or linear programming. The methodology was tested on two Weapon-Target
Assignment (WTA) problems. The total cost of a mission was minimized, while sat-
isfying the operational constraints and ensuring destruction of targets with high prob-
ability. The risk of a failure of the mission is controlled by CVaR constraints. The
case studies showed that there were significant qualitative and quantitative differences
in solutions of deterministic and stochastic WTA problems.

The third part of the project studied the Multiple Traveling Salesmen Problem
(Multiple-TSP) in several variations. The research was focused on MIN-MAX 2-TSP,
which cannot be solved by standard methods. The relation between this class of prob-
lems and a subclass of the self-dual monotonic Boolean functions was established. This
resulted in new efficient optimization algorithms. ‘
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Part 1: Optimal Path Planning in a Threat
Environment
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1. Introduction

The class of military and civil engineering applications dealing with opti-
mal trajectory generation for space, air, naval and land vehicles is very broad.
It addresses several types of problems with various objectives, constraints on
resources and control limitations, for instance,

» Minimizing risk of aircraft detection by radars, sensors or surface air
missiles (SAM) [5, 19, 22]

» Minimizing risk of submarine detection by sensors [21]

s Minimizing cumulative radiation damage in passing through a contami-
nated area

» Finding optimal trajectories for multiple aircraft avoiding collisions [15]

m Maximizing the probability of target detecting by a searcher [1, 3, 9, 12,
13, 16, 17, 20]

» Minimizing propellant consumption by a spacecraft in interplanetary
and orbit transfers [4]

» Minimizing a weighted sum of fuel cost and time cost for a commercial
plane ’

m  Minimizing energy for a mobile robot on terrains

We are interested in developing efficient optimization approaches capable
of solving a broad class of applications related to trajectory optimization. This
chapter, being the first step in accomplishing this task, is primarily focused
on optimal path planning for an aircraft in a threat environment. The threat
is associated with the risk of aircraft detection by radars, sensors or SAMs.
The chapter develops analytical and discrete optimization approaches to op-
timal trajectory generation that minimize the risk of aircraft detection with:
1) variable aircraft Radar Cross-Section (RCS); 2) different types of detecting
installations; 3) arbitrary number of detecting installations; 4) constraint on
trajectory length; and suggests efficient algorithms for solving the formulated
risk minimization problem.

Optimal trajectory generation is a fundamental requirement for military air-
craft flight management systems. These systems are required to take advantage
of all available information in order to perform integrated task processing, re-
duce pilot workloads and provide updates at regular time intervals sufficient
for threat avoidance [19]. A model for optimal routing an aircraft in a threat
environment is developed based on specified mission objectives, available re-
sources (fuel capacity), limitations on aircraft control while minimizing risk
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exposure. In general, it addresses uncertainty and dynamics inherent to opti-
mal path planning and makes idealizing assumptions with respect to geomet-
rical and physical properties of an aircraft and threat environment. Despite
numerous studies in this area, only a few considered risk optimization prob-
lems with technological constraints. Zabarankin et al. [22] suggested analyt-
ical and discrete optimization approaches for optimal risk path generation in
two-dimensional (2D) space with constant RCS, arbitrary number of sensors
and a constraint on path length.

This chapter develops a 3D model for minimizing risk of aircraft detection
by radars, sensors or SAMs with variable RCS. A sensor is considered to be an
antenna capable of receiving an isotropically radiated signal from the aircraft,
while a radar is assumed to be an antenna capable of transmitting a signal and
receiving the signal reflected off of the aircraft. The model is deterministic and
static, since it assumes no uncertainty in aircraft detection and radar locations
and considers neither aircraft kinematics equations nor parameters for aircraft
control during a flight. The risk of detection is assumed to be independent on
aircraft speed. This model extends the 2D risk minimization problem [22] of
aircraft detection by sensors to

» 3D space

m Variable RCS — an aircraft is considered to be an axisymmetrical ellip-
soid with the axis of ellipsoid symmetry determining direction of aircraft
trajectory

» Risk of detection to be proportional to the aircraft’s RCS and reciprocal
to the n*t-power of the distance between the aircraft and a particular
detecting installation, where n = 2 corresponds to a passive listener or
sensor, and n. = 4 corresponds to an active listener or radar

The purpose of this simplified model is analyzing the impact of variable
RCS on the 3D geometry of optimal trajectories subject to a constraint on tra-
jectory length and evaluating performance of the developed discrete optimiza-
tion approach with respect to running time and accuracy. Verified optimization
techniques will be applied in optimal path planning with actual-tabulated RCS.

We developed analytical and discrete optimization approaches for solving
formulated trajectory optimization problem with a constraint on trajectory length
and arbitrary number of detecting installations (sensors or radars). Through
techniques of Calculus of Variations, the necessary optimality conditions for a
solution to the risk minimization problem were reduced to a nonlinear vectorial
differential equation. In the case of a single radar, we obtained an analytical
solution to this equation expressed by a quadrature. Analytical solutions are
intended for conceptual understanding and analyzing the impact of variation
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in RCS on the geometry of optimal trajectories and testing perfoﬁnance of the
developed discrete optimization approach in the case of a single radar in 2D
and 3D spaces. Although we have made significant progress in the develop-
ment of the analytical approach, finding an analytical solution to the vectorial
differential equation in the case of an arbitrary number of installations is still
an open issue. This is one of the main reasons for addressing development of
discrete optimization approaches.

Several discrete optimization approaches are avallable for numerical solving
proposed risk minimization model. All these approaches may tentatively be
divided into three major categories:

» Gradient-based algorithms
w  Dynamic programming
m Network Flow (NF) optimization

Efficiency of discrete optimization approaches in optimal risk path planning
essentially depends on type of risk functionals, technological constraints, and
a scheme of trajectory approximation (see, for instance, [19] for discussions
of these issues). Gradient-based algorithms are very efficient when the risk of
detection is determined by smooth analytical functionals. However, while dy-
namic programming and NF optimization are global optimization approaches,
gradient-based algorithms most likely find only locally optimal solutions in
the case when risk functionals are nonconvex. Many of the previous studies on
trajectory generation for military aircraft are concentrated on feasible direction
algorithms and dynamic programming [5]. These methods tend to be compu-
tationally intense and, therefore, are not well suited for onboard applications.
To improve computation time, John and Moore [19] used simple analytical risk
functions. Based on such an approach, they developed lateral and vertical al-
gorithms to optimize flight trajectory with respect to time, fuel, aircraft final
position, and risk exposure. Nevertheless, these algorithms are not intended for
solving optimization problems with technological constraints, such as a con-
straint on the trajectory length. Zabarankin et al. [22] demonstrated efficiency
of NF optimization approach in solving risk minimization problem with a con-
straint on trajectory length and arbitrary number of sensors in 2D space. The
main advantages of using NF optimization approach are

= Among all feasible approximated trajectories in a considered network,
NF approach finds a globally optimal one.

» Complexity of NF algorithms is independent on number of detecting
installations.

» It can easily be applied for the case with actual nonsmooth RCS.
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‘Despite these advantages, the complexity of NF algorithms substantially
depends on the coarseness of a network, in particular, on the number of arcs.
Consequently, precision for an optimal solution should reasonably be specified.
Recently, Tsitsiklis [18] and Polymenakos et al. [14] suggested Dijkstra-like
and correcting-like methods for efficient solving a continuous-space shortest
path problem in 2D plane. In this case, finding a globally optimal trajectory
employs discretization of Hamilton-Jacobi equation [18], which turns out to be
an efficient synthesis of analytical and discrete optimization techniques. This
supports the philosophy that using analytical properties of objective functions
in NF optimization leads to more efficient algorithms. Since our goal is gen-
erating globally optimal trajectories and on the next step applying developed
optimization approach in optimal path planning with actual-nonsmooth RCS
" (in this case utilizing analytical properties of risk functionals is limited), we
considered NF optimization approach.

We approximated an admissible domain for aircraft trajectory by a 3D net-
work with a flexible structure and presented aircraft trajectory by a path in
this network. NF optimization approach reduced optimal risk path generation
with a constraint on trajectory length to the Constrained Shortest Path Prob-
lem (CSPP). Development of efficient network structures with relatively small
numbers of arcs and nodes while preserving flexibility for trajectory approxi-
mation is one of the key issues in reduction of approach computational time.

To solve the CSPP in 2D and 3D cases, we used the Label Setting Algorithm
(LSA) with a preprocessing procedure [7, 8] and network structure smooth-
ing. The efficiency of the discrete optimization approach is demonstrated by
several numerical examples with various ellipsoid shapes, constraints on tra-
jectory length in the cases of one, two and three radars. For the case with a
single radar, we compared analytical and numerical solutions and found that
solutions coincide with high precision in 2D case and are very close in 3D
case. The fact that discrete trajectories are closer to corresponding analytical
ones in 2D case can be explained by different flexibility of 2D and 3D network
structures in trajectory approximation. LSA running time in all 2D testing ex-
amples is only several seconds, indicating that this NF algorithm is fast enough
for use in online applications with a relatively small number of arcs in a graph.
However, it is also known that the CSPP is an NP-hard problem and, conse-
quently, no exact polynomial algorithms should be expected. Numerical tests
in a 3D case reveal that LSA running time strongly depends on the shape of
ellipsoid. This phenomenon has been analyzed from optimization perspective
and an improvement for preprocessing procedure has been suggested.

The chapter is organized as follows: section 2 develops a 3D model for
trajectory optimization with variable RCS subject to a constraint on trajec-
tory length; section 3 derives the vectorial differential equation for finding the
optimal trajectory in a general case and obtains analytical solution to this equa-
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tion in the case of a single radar; section 4 reduces optimal path planning to
the CSPP and presents the LSA with preprocessing procedure and smooth-
ing condition; section 5 conducts numerical experiments with various ellipsoid
shapes and constraints on trajectory length in the cases of one, two and three
radars; section 6 analyzes results of numerical experiments from optimization
and variable RCS perspectives; section 7 discusses main analytical and nu-
merical results and concludes the chapter; the appendix considers necessary
“optimal conditions for calculus of variations problem with a nonholonomic
constraint and movable end point.

2. Model De\;'elopment

This section develops a three-dimensional (3D) model for minimizing the
risk of aircraft detection by a network of active or passive installations (radars,
sensors) with variable aircraft RCS.

Suppose an aircraft must fly from point A, (x4,%4,24), to point B,
(zB,yB, zB), in 3D space trying to minimize the cost of detection from N
radars located in the area of interest. We model the aircraft by an axisymmetri-
cal ellipsoid with the axes’ lengths a, b and b. The axis with length a is the axis
of ellipsoid symmetry, which orients a direction of aircraft trajectory. Ellipsoid
shape is defined by parameter x = b/a. Casesof k = 1, Kk < landx > 1
correspond to sphere, elongated and compressed ellipsoids, respectively, see
Figure 1.1.

k<1 k=1 x>1
b a
b
elongated ellipsoid sphere compressed ellipsoid

Figure 1.1. Ellipsoid shape is defined by parameter x = b/a.

Let vectors r = (z,y,2) and q; = (ai, b, ¢i), i = 1, N, determine po-
sition of ellipsoid geometrical center and position of the ith radar, respec-
tively. A trajectory of the ellipsoid’s center is assumed to be a path of the
aircraft. We define a trajectory as a function of its current length s, i.e. T =
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r(s) = (z(s),y(s), 2(s)). Such a parameterization is also known to be the
natural definition of a curve. Vector ©(s) = %r(s) = (£(s),y(s), 2(s)) de-
termines a direction of aircraft trajectory that coincides with the axis of el-
lipsoid symmetry. Since (ds)? = (dz)? + (dy)? + (dz)?, vector i(s) must
satisfy condition #2 = &2 + ¢? + 22 = 1. The length of vector r;(s) =
r(s) — q; = (z — ai,y — b;, z — ¢;), denoted by ||r;(s)||. defines the dis-
tance from the aircraft to the ¢*® installation (see Figure 1.1), i.e. ||r;(s)|| =
VE— )2+ (y—b:)2 + (2 — i)

Z

Figure 1.2. 3D model for optimal path planning in a threat environment.

The RCS of the aircraft exposed to the it® radar at point (z, y, 2) is propor-
tional to the area of the ellipsoid’s projection to the plane orthogonal to vector
ri

RCS{ = 0j Si,
where the constant coefficient o; depends on the radar’s technical character-
istics such as the maximum detection range, the minimum detectable signal,
the transmitting power of the antenna, the antenna gain and the wavelength of

radar energy. ‘
The magnitude of ellipsoid projection area is given by the formula S; =

b \/ a2sin? 6; + b2 cos? 6;, where 0; is the angle between vectors r; and r.
Based on relation cos §; = ﬁﬁ[ and using notation & = b/a, the formula for
RCS; is identically rewritten as

2 b2 2 » e\ 2
RCS,-=ai7r(a ; )1_:&2 \/1+(K,2—1) (ﬁ) , k€l0,+00).
(1)
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The purpose of presenting RCS; in the form of (1) is the following. Since
the aircraft has a limited size, we assume the value Va2 + b% (“diameter” of
cross-section) to be constant for all a and b and, hence, the form of the ellipsoid
to be defined by ratio b/a, i.e. parameter x, only. For instance, the case of
k = b/a = 0 corresponds to an infinitely thin needle with the length of a,
while the case of K = b/a — oo corresponds to an infinitely thin disk with
the radius of b. Note that the cross-section of the infinitely thin needle always
equals zero, whereas the cross-section of the infinitely thin disk is reduced to
o; m a? | cos 0;], which is zero only when 8; = .

The risk function (also referred to as cost function) for detection of the air-
craft by the it radar is proportional to the i* RCS and reciprocal to the n'®
power of the distance between the aircraft and the " radar, ||r;||" (cases of
n = 2 and n = 4 correspond to sensor and radar, respectively), namely,

.\ 2
RCS; o (a2+b2) 2% \/1 +.(K,2._1) (ﬁ)
= 0; .

il 2 J1+# ][

C’(ri, l") =

Since the value of v/a? + b2 is assumed to be constant, product 7 (“2*2"’2) can

be omitted for simplicity and the risk function for detection of the aircraft by
the #*? installation is reexpressed with normalized coefficient w;

o VlImill2 + (62 = 1) (i - #)°
1 + I‘&2 ”ri||n+1 )

C(ri, ) = )

N N
where w; = 0 Z g; and z w; = 1.
i=1 i=1
We assume the risk of detection from N radars at point r = (x,y, z) to be
the sum of risk functions (2) foralli =1, N

N N 2 2 AV
. e VIl + (2 = 1) (x: - £)
L(r,#) = ?—__1: C(ri, 1) = 1+ r2 ?:1: Wi TEE - G

The total risk of detection is the integral of (3) along aircraft trajectory with
length [, i.e.

{
Fe8) = / L (x(s), #(s)) ds. B
0

The risk minimization problem is finding a trajectory

P =1(s) = (2(s),y(s), 2(s)), 0 < s <,
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from point A to point B, having coordinates r4 = (Za,Ya,24) andrg =
(xB,YB, 2B), respectively, with the minimal risk of detection subject to a con-
straint on trajectory length

m}in F(r, 1)
s.t. #2=1
) 5
r(0) =ry4, r(l) =rp, ©)
1<1,.

The form of risk functional (4) implies that either the risk is independent
on aircraft speed, or aircraft speed is always a unit. Under assumption of unit
speed, s becomes time variable ¢, total length [ becomes total time T, and (5)

T
is viewed as a problem of optimal control with F(r,v) = [ L(r(t), v(t)) dt,
0

with v = #. Whatever the interpretation of (5) is, analysis techniques are the
same. To solve problem (5), calculus of variations and network flow optimiza-
tion approaches are addressed.

We want to mention the 2D dynamic model for minimizing the risk of sub-
marine detection by a network of sensors [21]. In that model, the risk func-
tional considers different directions of the power radiation and variable speed
of a submarine

TN
(1 — kg cos(26;(2))) p—_—
_ ‘/i—l Sim— EOIE (1 + ra|Irgl|*) dt,

where r;(t) and 6;(t) mean exactly the same as in aircraft detection model
(see Figure 1.2), i.e. r;y(t) is the distance between the submarine and the
i? sensor and 6;(¢) is the corresponding angle, which now both depend on
time t; r; denotes submarine speed at time moment ¢; S; is the sensitivity
coefficient associated with the it? sensor; k3 and kg are parameters, which
correspond to doubling the radiated power relative to small speeds (usually,
k1 = 0.0003 << 1) and adjustment of power radiation in different directions
(k2 < 1; when k2 > 0, power tends to be radiated most strongly broadside;
Ko is arbitrarily set to 0.5 [211), respectively. The term 1 — k2 cos(26;(t)) may
be considered as submarine cross-section in 2D space. The Optimal Control
approach, suggested to solve the model, starts with some feasible trajectory
provided by an observer and transforms it to locally optimal one by steepest-
descent technique.

3. Calculus of Variations Approach

This section presents a vectorial differential equation for solving the risk
minimization problem (5) and obtains an analytical solution to this problem
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in the case of a single radar or sensor. The vectorial differential equation is
the reduction of necessary conditions for an extremal minimizing a functional
with a nonholonomic constraint and movable end point. Through techniques
of Calculus of Variations, the appendix derives this equation in a general case.

Introducing a new function .

1

- + ALy (6)
e Ir=1/lral 2 4 (2 — 1) (s - )

gi(ri, 1, AL) =

and using notation g; = a‘-ls- gi,» we formulate necessary conditions for an opti-
mal trajectory satisfying (5).

Theorem 3.1. (vectorial differential equation). An optimal solution to opti-
mization problem (5) should necessarily satisfy the following vectorial differ-

ential equation
N re
(25 -#) i) =0, o
- ry-r
i=1
with boundary conditions

r(0)=ry4, r{l)=rp, [l 8)
and nonholonomic constraint
o) =12 —-1=0. )

Proof. The problem (5) is a particular case of the problem (1.A.1)-(1.A.5) con-
sidered in the appendix. In the case of (9) we have %% = 2 and consequently
%—g—’ / (x" . g%’) = . Substituting the last equality into the general vectorial
differential equation (1.A.10) derived in the appendix, we obtain the vectorial
differeritial equation for determining an optimal trajectory r(s), 0 < s <,

oL d (OL ) _
5}“%(5?“(“""3??“))‘0' (10)

Introducing a new constant Az, by relation ¢y, = -1-_%5)\ £ and using notations
gi = g(ri,*,AL), §i = ;‘f;g (r;, ¥, A1), where function g(r;, T, Ar) is defined
by (6), we verify that the following relations hold for (3)

N
. OL 2K
L—r'g'l'CL—mi—_-zlw;gg,
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oL d OL
L 1+m22 (

which reduce (10) to equation (7).
- Note equation (7) and constramt (9) are dependent in the sense that the scalar

product of (7) with # is reduced to Z w; ((1—12?) ¢ —¥g:;) = 0, which
i=1

becomes identity if (9) is satisfied. a

Remark: equation (7) may be presented in different forms. Using relation (5),
we have Jip — I = 551[,‘:'7’"1 and —¥(r; - #) = I X [r; X ¥]. Consequently, (7)
becomes

iwi (r xr[r,:r]g —rg) —r><Zrz - [rzx i(rgl)] =0.

=1 i=1

Equation (7) may also be presented in a matrix form. Denoting

w191 1
w292 1
Gnx1 = . ) ENx1 = . 3
WNIN o\ 1
I ra rnN
R3XN=( ) ey ey -)3
ry'r ro-'r ry-r

(7) is rewritten as
v _ 4 .ot
RG = T (" -G)).

Choice of a form for (7) is just a matter of convenience for conducting an-
alytical manipulations or numerical analysis. Differential equation (7) may be
solved numerically by an appropriate gradient-based algorithm, however, in
this case we are not guaranteed to obtain a globally optimal solution.

Deriving an analytical solution to (7)—(9) with an arbitrary number of radars
or sensors is reduced to finding the second integral for equation (7) (the first
one is nonholonomic constraint (9)), which still remains an open issue. The
next theorem shows how the second integral and a corresponding analytical
solution are found in the case of a single radar or sensor.

Theorem 3.2. (the case of a single radar or sensor). In the case of a single
radar or sensor, located at the origin of the system of coordinates, i.e. point
(0,0,0),
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(1) the optimal trajectory is a planar curve in 3D space, where the trajec-
tory’s plane is determined by the origin of the system of coordinates and the
starting and finishing trajectory’s points, i.e. by (0,0,0), r 4 and r g (the equa-
tion of the plane is given by [rg4 x rg] -r = 0);

(2) introducing a polar system coordinates (p, ) in the trajectory’s plane,

vectorial differential equation (7) with (8) and (9) is reduced to a nonlinear
first-order differential equation with respect to function p = p(%)

2
L R ARG a
P2 K2+ 02 ([ (Py)? + PP
with boundary conditions
p(¥a) = pa, p(¥B) = pB; (12)

defining points A and B in the polar system (p, ), and a constraint on trajec-

tory length
¥B .
/ \/(Py)? + p? dyp = L. (13)
Ya

Proof. Since an analytical solution to (7) is derived in the case of a single
radar, without loss of generality, we assume that the radar is located at the
origin of the system of coordinates, that is, (a1, b1,¢1) = (0,0,0), and r; =
r. Functions L (r,t), g (r,, A1) and equation (7) in this case are presented,
respectively, ’

o I+ (52 = 1) (r - #)°

et =175 [|r||m+2 ’

. 1
g(rir, )\L) = +)‘L,

- =\2
lefl=24/liel2 + (52 = 1) (x - #)
r
T Ni—sfo=o.
(r Sy r) g—*9g
Producing vectorial product of the last equation with vector r, we obtain

d .
E ([r X l‘]g) =0,
which is equivalent to having the first integral

[rx ¥ g=C, (14)
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where C = (C1,Cs, C3) is a constant vector. Since (r - [r x ]) = 0 and
g (r,#,AL) # 0, the scalar product of (14) with r leads to

C-r=0,

which is the equation of a plane going through the origin of the system of
coordinates. It means that an optimal trajectory is a planar curve in a 3D
space, i.e. all its points form a single plane in a 3D space (lie within the same
plane). Since boundary points A and B must also belong to trajectory’s plane,
i.e. vectors r4, rp must satisfy equation C - r = 0, vector C is parallel to
[ra x rp), and the explicit expression for the trajectory’s plane is given by

[raxrp]-r=0, (15)

or
hzm+hyy+h2z=0,

where (hg, hy, h;) are the components of vector [ra X rp]
(hgy hy, hz) = (yazB — YB2A, 2ATB — 2BTA, TAYB — TBYA)-

The next step is parameterizing 3D plane (15) by a 2D polar system of coor-
dinates (p, ). A point with coordinates (z(p,v), ¥(p, %), 2(p, %)) should sat-
isfy (15) identically. Suppose the origin of the polar system (p, %) coincides
with the origin of the original 3D system of coordinates, i.e. point (0,0, 0).
Let 7 be a counterclockwise angle producing left-handed screw with the vec-
tor [r4 X rp| and counted from the upper side of the plane zy. Introducing
notations

h ' h
pp— L - g | 7 —
cosa VorTh cos 3 EEvrEeed

. _h o /h2+th:
sina = ——”—m, sin B = WoEmEr
coordinates (z,y, 2) of points identically satisfying (15) are determined by the
following relations

z(p, ) = p (sina cosy — cosa cos B siny),
y(p,¥) = —p (cosa costp +sina cos B sine),
z(p, ) = p sin B sine.

Based on these relations, we have

[rA X rB]
lllra x 5]l

and, consequently, using the last formula, (14) is reduced to the following
scalar equation

frx ] = —p*

pHpg=C, | (16)
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where C is unknown constant scalar value. Since r? = ||r]|2 = p? function
g (r, ¥, ) is rewritten as

1
)‘7}‘ = + AL.
g(pp L) N e oA

With this relation, equation (16) and constraint (9), expressed in terms of
(p, ) as p? + p*)? = 1, determine a system of differential equations for
finding optimal p(s) and ¥(s)

1 . '
c, P+pi=1, a7
(pn_z Ry + Lp)w P+ o . amn

with boundary conditions p(0) = pa, ¥(0) = ¥4, p(ls) = pB, ¥(l) = ¥B,
where (p4,%4) and (pp, ) are given by

pa= |lrall, wa = arccos (wﬁfﬂq),
ps = Ilrsll, wp = arccos (Z2ngtpeose),

Let ply = %. Using relation p = gy, 4 with the second equation of (17) we
present p and % as

/
. 1
N S U, S—
v/ (Py)? + P NICAE S
Substitution of the last formulas into the first equation of (17) eliminates
variable s from the system (17) and reduces it to the nonlinear first-order dif-
ferential equation (11) determining p as a function of 1 with boundary condi-
tions (12). Since variable s was eliminated from (17), the second equation of
(17) is satisfied identically, and, thus, a constraint on trajectory length should
be included in the form of (13).
Note it does not matter what sign, plus or minus, we choose for 1/} in 1/1 =
?}m since we always can change the sign of the constant C' in the
Pyl TP
right-hand side of equation (14) and denote it by a new constant. O

Discussion of necessary and sufficient conditions for a mini-
mum. Equation (11) (or system (17)) is only the necessary condition for a
trajectory to be just an extremal, since (11) finds trajectories minimizing the
functional (4) under given conditions as well as maximizing it. A sufficient
condition for a solution to system (11) to be an optimal trajectory (o, ¥4), i.e.
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to minimize the functional, requires the second variation of the functional at
(s, ¥4 to be greater than or equal to zero (see the appendix).

In the case of a single radar, the risk functional with the relaxed constraint
6% + p®? = 1is presented in polar coordinates by

l
7= [ Lo, 4)ds,
0

. SAT0Z-132 .
L(p, ) = —= L+ (& - 1) +/\*(p'2+p2¢2—1)-

_1+I‘&2 P

* 1 — K * :
where \* = 3 _*'f y (pg TR + )\L> = =9 Assuming the con-
straint on the length of a trajectory to be active, i.e. [ = I, the second variation
of the functional F at (p«, 1«) is defined
l H "
#F = [ (L0007 + Lpp(6p) + L (89)2 + 2L;00
0

* 2Ly dp D+2L00580)| o ds
= [ (50— $55) @02 + o0 + Ly 607
+ 2L ;8p 9+ 2L .5°5¢)| e 8
= 1+—n5 (1’(510)2 + Q(86)% + g*p2(69)? + 4g* puthubp ¢)
2 l* 5 52
= = : P — 4q* 2 5 +Q .
i::'ro(( g¢)2(p) (66)
+g* (211:*6/: + p.,&&) ) ds,

where P and Q) are given by

n d 1
P=— ,
prds \ /T4 (2 = 1)
K’2 —vl *

3
pe (1+ (k2 —1)p3)?

Since the extremal (p., 1, ) satisfies (17), we can use (17) to rearrange P,Q
and the other terms in the integral of §2F and, thus, obtain different equivalent
expressions for 62F. However, verification of the condition §2F > 0 for all
ép, 6p and 6¢ even in this particular case, is not a trivial task.
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We confine ourselves here only to verification of necessary conditions for
a minimum. For an extremal (p,,%,) to minimize the functional, it should
necessarily satisfy the Legendre conditions

" "

L. -
o Pip

"

L.

> >0
PPlo=p* =y — '

p=p*, Yp=1p*

which are reduced to verification of Q > 0 and g* > 0. In the case of k >
1, condition Az > O guarantees satisfaction of both @ > 0 and g* > 0,
which, however, may not be sufficient to guarantee Q > 0 when k < 1. The
assumption of Ar’s positivity will play a crucial role in finding appropriate
values of Az, and C in numerical examples.

Although an analytical verification of whether a particular extremal trajec-
tory minimizes the functional is cumbersome, the graph of this trajectory im-
mediately reveals what kind of an extremal it is. Indeed, if the line passing
through points A and B separates the trajectory and the radar/sensor, i.e. the
trajectory moves away from a detecting installation (the trajectory is “con-
cave”), then it minimizes the risk, and vise-versa, if the trajectory moves to-
wards the detecting installation (the trajectory is “convex”), then it maximizes
the risk.

An analytical solution to equatlon (11) with boundary conditions (12) and
constraint (13) is presented in the next theorem.

Theorem 3.3. (analytical solution in the case of a single radar or sensor). An
analytical solution for nonlinear first-order differential equation (11) with con-
ditions (12), (13) is given by the following quadrature

(18)

P(p) =vYax

f \/(v*(r, A, C))% — 72

where v*(p, A, C) is a positive root of the following algebraic equation (quar-
tic equation)

F) = p" 2 (Cv—Ip?) V22 + (1 —K2)p2 —v=0, (19
and unknown constants Ay, and C are found from the conditions

¢)) f (P, AL, C)dyp = L and zp(pB) = 1 if the length constraint is

actzve,
(2) Az = 0and (pB) = Yp if the length constraint is inactive.

Proof. The main technique for solving any first-order differential equation an-
alytically is to explicitly express the derivative of an unknown function. By
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introducing an auxiliary function
v =4/(py)? + P (20)

we reduce (11) to the algebraic equationv(19) with respect to v, which is a
particular case of the following quartic equation

p2(n—2) (C’v _ )\Lpz)2 (521)2 +(1- Kz)pz) — 2 =0.

Explicit analytical expressions for four roots of any quartic equation may be
presented by Cardan’s (Cardan-Ferrari’s) formulas. This is a crucial point in
obtaining an analytical solution for the differential equation (11). Due to the
cumbersome form of the expressions for the roots of equation (19) we do not
present them here. Suppose that v*(p, A, C) is a root for (19), then according
to (20), derivative g, is expressed

p'ln,b = i\/('U*(Pa AL, C))2 - p2)

which leads to a quadrature expression for ¢ = ¥(p)

D.

Y(p) =

+ dp
/ V0 (0,32, C))* - 2 ’

Excluding constant D based on boundary conditions ¥(pa) = %4 and
¥ (pB) = VB, this quadrature is reduced to the form of (18).

Note a root for (19) depends on values of Az, and C. Which root should be
chosen with respect to Az, and C and what are the estimates for Az, and C are
the subject of the next theorem. O

The quadrature (18) is considered to be an analytical solution, since the roots
of the quartic equation (19) may be expressed by Cardan’s (Cardan-Ferrari’s)

- formulas analytically. There are two special cases when the quadrature (18) is

simplified.

Example 1 (the optimization problem without a constraint on trajectory
length). The first case corresponds to the optimization problem without a con-
straint on trajectory length, in this case an optimal trajectory is presented by
Rhodenea (rose function)

p(¥)) = C~ =T sin7t ((n ~-1)

Y+ D)) ; @1

K

. _ . -1
. where D is a constant D = £+ arcsin (Co) — va.
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Detail. In the case without a constraint on trajectory length AL =0. Conse-
quently, the only one feasible root for (19) satisfying v* > 0 is

\/1 —(1— ,g2)02 2(n—1)
Cnp" 2

’U*

Its substitution into (18) leads to

Y(p) = Y4 :i:

—1\|P
1 arcsin (C" 1) on

which, being rewritten as a function p = p(%), is reduced to (21).

In the case of n = 2, function (21) represents an arc of a circle passing
through the origin of the system of coordinates and pomts A and B [22]. Figure

1.3 illustrates behavior of function p(¢) = sinm-1 (9’—121&) for parameters
n =4 and k = 0.5, 1.0, 2.0.

1 k=20

-0.2 0 0.2 0.4 0.6 0.8
Figure 1.8. Function p(¥) = sin® %3‘& .

Note if n > 2 constant C in (21) can be determined only when |¢5 — 94| <
min § 7, ;X } otherwise a solution to (11— 12) without constraint (13) will be
unbounded.

Example 2 (the case of sphere). The second case corresponds to the opti-
mization problem when an aircraft is modeled by a sphere, in this case £ = 1
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and an optimal trajectory is presented by the explicit quadrature

™=2dr

p
't,b(p) = ¢A + Cp[ \/(/\LTn + 1)2 —_ 027'2("'"‘1) '

(22)

In the case of n = 2, quadrature (22) is reduced to the elliptic sine [22].

Detail. In the case of x = 1, the root for (19) is given by

o* = ALpn'*' 1
= ——Cp —

which being substituted into the quadrature (18) reduces it to (22).

Figure 1.4 illustrates optimal trajectories for a “spherical” aircraft (x =
1) for n = 4 with different constraints on trajectory length, I, in trajec-
tory’s plane determined by points (z4,y4) = (—0.25,0.25), (zB,yB) =
(1.75,0.25) and radar position (0,0). Figure 1.5 shows the same optimal tra-
jectories for a “spherical” aircraft (x = 1) for n = 4 with the same constraints
on trajectory length, I, in 3D space with (z4,y4,24) = (—0.25,0.15,0.2),
(zB,yB,28) = (1.75,0.15,0.2). Similar figure for n = 2 can be found in
[22].

Figure 1.4. Optimal trajectories for the case of “sphere” with different constraints on the
length, ., in the trajectories’ plane. ’
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Figure 1.5. Optimal trajectories for the case of “sphere” with different constraints on the
length, 1., in 3D space.
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We compared analytical solutions for optimal trajectories in the cases with
radars and sensors. Analytical solution for an optimal trajectory with a con-
straint on trajectory length in the case of a single sensor is expressed by the
elliptic sine [22]. Figure 1.6 compares optimal trajectories with the same con-
straint on trajectory length I, = 3.2 for a “spherical” aircraft in the cases of
a single sensor (n = 2) and single radar (n = 4). As expected, an optimal
trajectory is more sensitive to a radar than to a sensor within proximity to an
installation and vise-versa.

sensor

————

1
Installationr . . )
0 0.5 1 1.5

Figure 1.6. Comparison of optimal trajectories in trajectories’ plane for the cases with a
single sensor (n = 2) and single radar (n = 4) with the same constraint on the length, l. = 3.2.

The next theorem provides some insights regarding bounds of unknowns v*
and C facilitating numerical implementation of (18) and (19).

Theorem 3.4. (estimates for Az, C and a feasible root for the quartic equa-

tion). If A, > O then constant C should satisfy
n=1

o, n () ™ | e e D],
0, min {/\LPA+PA( Y yALPB +PB )}] AL ¢ [)‘La)‘L]

, (23)
with \T = max{ =, p } AL =mm{ = 1 p and equation (19) has
a unique root v* wzthm interval [Umin, Umax) where
Vmin = max{p, C71 (Ao +p "D min{1,s71}),

2, /max {C-? ‘2("—1)+n2——1 0}},

Ce

24
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Umax = o (/s)\Lpz +p~ (2 4 Cp\/;}ax {1,x%} — 1) . (25

Proof. All estimates for C' and root v* are obtained by analyzing equation
(19) with respect to feasibility of v* and the assumption of Ap’s positivity. The
first part establishes bounds for C' depending on Ar. Using inequality v =

+/ ()% + p% = porv > p, equation (19) is reduced to p ~1(Cv —ALp?) -
v < 0 or, equivalently, to Azp™! > (Cp™~! — 1) v. Applying v > p again,
the last inequality is reduced to A,p" > Cp"™~1— 1, which is rearranged in the
form

C < App+p D (26)

Since (26) holds for all feasible p, we obtain C' < mgn (ALp+ ,o“("‘l)).
Expression App + p_("—l) is a convex function with respect to p, achieving

i
its global minimum at py = (-é_LT) ™. Consequently, if min {p4, pp} <

n

po < max{pa,pB} (equlvalently AL € [)\L,)\ L]) then pg is feasible and

O <Aoot 3™ = (220) ™ 1t po ¢ [min {ps, p5}  max {pa, o5}
(or equivalently A\, ¢ [AE, /\}:]) then we are not guaranteed that in a particular
example, function App+ p —(n=1) will achieve its global minimum at pg, since
po may not be feasible. However, in this case, at least the following weak
estimate should hold C' < min {)\LpA + pA( b y ALPB + ppg G 1)} Based

on v > 0 and the assumption of Af > 0, pos1t1v1ty of C is obvious. Indeed,
rewriting (19) in the form

P2 (Cv — App?) VK22 + (1 — K2)p2 = v >0,

we obtain Cv > Azp?, which concludes that C' > 0. This finalizes the proof
of formula (23).

The second part establishes bounds for v*, i.e. interval [Vmin, Umax] con-
taining a single root v*. This part includes the following consecutive steps.

» The first lower estimate for v* is obtained by expressing Az, from (19)
and satisfying the condition Ar, > 0. That is, from

v 1
AL=—{C— >0,
L= ( pﬂ—Q\/E%?-{-(l—nz)p?) =

we have

4 —2,-2(n—1) 4 2 —
vzﬂ\ﬂnax{c p-2n-1) 4 k2 — 1, 0}. @7
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Then we utilize upper and lower estimates for 1/k?v? + (1 — k%)p? de-
pending on whether s < lork > 1. ‘ ,

s In the case of k < 1, we have kv < {/k%v? + (1 — k2)p? < v, which
being applied to equation (19) reduces it to p" 2k (Cv — App®) <1<
p"~2 (Cv — ALp?). These inequalities give the upper and lower esti-
mates for v when k < 1 ‘

c! (/\Lp2 + p‘(”_z)) <v<Cc? ()\Lp2 + ﬁ_lp_(n_z)) . (28)

Note if k = 1 then (28) provides an exact value for the root v* =
c-1 ()\LP2 +p—(n—2)). _

m Analogously, in the case of k > 1, we use

kv — pV K2 — 1 < /K202 + (1 — £2)p? < kv,
to reduce equation (19) to
p" 2 (Cv - )\Lp2) (m) - pVK2— 1) < v < p" 2k (Cv = App?),
where the left inetluality is then transformed to
v>p" % (Cm; — Apkp? — Cp\/ch:—l) .
Consequently, we obtain

v > c-1 (ALP2 + K—lp—(n—z)) ,

v< c-1 ()\LPZ + R—lp—(n_2) + Cp /1 — K,':Z-) ) (29)

Combining inequality v > p with (27), (28) and (29) for both cases k < 1
and x > 1, we obtain (24) and (25).

To prove that equation (19) has a single root in the interval [Umin, Umax], e
show that the function

fv)=p""2(Cv—- ALp?) VK22 + (1 = k2)p? — v,

is monotonically increasing on [Umin, Vmax] and f(vmin) < 0, f(Vmax) = 0.
Consider
d ( o S p"~2 (Cv — App?) kv
—f(w) = (Cp" 2 /K202 + (1 —KkD)p? - 1) + .
55 10) = (Cr 2 VRAT A= - 1) + Emeees
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The first term and the nominator of the second term in the expression of

f (v) are increasing functions with respect to v. For v > Umin the first
term is always nonnegative due to (27) and the nommator of the second term
is always positive based on (28) and (29). Consequently, 4 f(v) is positive on
[Umin, Umax)» Which means that f(v) is a monotonically i 1ncreasmg function.

Since Uiy is the maximum of three values (24), we check the sign of f (v)
for each of them.

® The relation f(p) = p" (C — Ap— p~("~1) < 0 holds by virtue of
(26).

. For Omin = £4/max {0—2 -2(n-1) 4 g2 — 1, 0} two cases are con-
sidered. If 0-2 —2(n-1) 4 42 1< 0 (whenk < 1) then Drmin = 0 and
f(Omin) = —/\Lp"“\/l — K2 <0.IfC~2p~2("1) 4 k2 — 1> O then
Dmin = 24/C~2p72(""1) 4 k2 — 1 and

F(Omin) = C~* (COmin — ALp?) — Omin = —C ' ALp® < 0.

 For Omin = O~ (Ap? + p~™ ) min {1,571 }), based on

VK202 + (1 — k2)p? < v min {1, x},
we obtain

f(Umin) £ Umin Cin — App?) min {1,k} — 1
- = Emm {(1 &1} mll’f?l) K} ——-{1) =0. )

Unmin

Thus we established that f(vmin) < 0 for Umin = max {p, ¥min, Dmin}-
In the case of Umax given by (24), we use

VK202 + (1 — k2)p? > kv — py/max {1, k?} — 1,

to show that

F(vr) 2 972 (Cvimns = Arp?) (e = p/ T 7Y 1) = U

Consequently, we proved that f(Umin) < 0and f(vmax) = 0, which along
with the condition of f(wv)’s monotonicity on [Umin, Umax| guarantee existence
of only a single root for f(v) on [Unmin, Vmax)- O
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Example 3 (elongated and compressed ellipsoids in the case of n = 4).
Coordinates of points A and B are the same in all examples. In trajectory’s
plane (z4,y4) = (—0.25,0.25), (zB,yB) = (1.75,0.25), and in 3D space
(z4,y4,24) = (—0.25,0.15,0.2), (B, yB, 2B) = (1.75,0.15,0.2). Figures
1.7, 1.8 and 1.9 compare optimal trajectories for sphere, elongated and com-
pressed ellipsoids. Table 1.1 presents values for the optimal risk, Az, C and
C’s estimate (23) for all considered numerical examples with different x and
le.

Figure 1.7. Optimal trajectories for sphere (x = 1.0) and elongated ellipsoids (« = 0.5, 0.1)
for n = 4 and I, = 3.2 shown in trajectory’s plane.

Table 1.1. Results of numerical experiments: values of optimal risk, Az, C and C’s estimate.

kL Risk AL C 4(r./3)°7"
1.0 26 9792116 4.763580322 5.369280470 5.658081121
1.0 32 8421726 1.040107422 1.759684438 1.807289381
1.0 40 7.966210 0.300707031 0.712062456 0.712568693
04 32 0468371 1.451660156 2.282777298 2.320693404
05 3.2 3.080716 1993432500 2.908499104 2.943880665
20 3.2 12464087 0610351562 1.143055224 1.211725076
10.0 3.2 14.845494 0.109076172 0.251462743 0.333055390

Analyzing optimal trajectories in Figures 1.6-1.9 and computational results

in Table 1.1 we conclude the following

m The optimal risk is more sensitive to variation of the shape of ellipsoid

(parameter ), than to the variation of a trajectory’s total length, Le.
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Figure 1.8. Optimal trajectories for sphere (x = 1.0) and compressed ellipsoids (v = 2.0,
10) for n = 4 and l. = 3.2 shown in trajectory’s plane.

Figure 1.9. Optimal trajectories for sphere (x = 1.0), elongated (k = 0.1) and compressed
(x = 2.0) ellipsoids for n = 4 and l. = 3.2 in 3D space.
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» Optimal trajectories for different k (especially for k > 1) are close to
each other, which indicates that a variation of ellipsoid shape has no
strong effect on the geometry of an optimal trajectory.

» Within proximity to an installation, an optimal trajectory is more sen-
sitive to a radar-installation than to a sensor-installation and in the area -
remote from the installation the effect is opposite.

4. Network Flow Optimization Approach

The calculus of variations approach reduces the optimization problem to
the vectorial nonlinear differential equation. Obtaining an analytical solution
to this equation in the case of arbitrary number of detecting installations is
still an open issue. Certainly, various gradient-based techniques may solve the
equation numerically. However, regardless of efficiency of those techniques
(although, this issue is also questionable due to strong nonlinearity of the equa-
tion), most of them provide only locally optimal solution. This section devel-
ops a discrete optimization approach generating globally optimal trajectories.

We propose network flow (NF) optimization approach to directly solve the
original problem. This approach reduces optimal risk path generation with a
constraint on the length to the Constrained Shortest Path Problem (CSPP) for
a 3D network, which can efficiently be solved by NF optimization algorithms.
There are several advantages of using NF optimization

» Among all feasible approximated trajectories in a considered network, it
finds a globally optimal one.

» ts complexity (running time) depends neither on a number of installa-
tions in a network nor on power n in the risk functional (2).

s It can readily be generalized for the case with an actual-tabulated radar
- cross-section (RCS) (i.e. when RCS is not a smooth function).

However, due to NP-hard nature of the CSPP, no polynomial algorithm
solves the CSPP exactly. It means that in a worst case, computational time
for the CSPP will exponentially depend on the number of arcs in a network.
Consequently, coarseness of the network should be specified reasonably.

4.1. Network Structure

We assume an admissible deviation domain for aircraft trajectory to be an
undirected graph G = (N, .A), where N = {1,...,n} is the set consisting
of n nodes and A is the set of undirected arcs. A trajectory (z(.), y(.), 2(.)) is
approximated by a path P in the graph G, where path P is defined as a sequence
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of nodes (jo, j1, . - - » jp) such that jo = A, jp = B and (jx—1,Jk) € A forall
k from 1 to p. Let graph G be a 3D grid of nodes (rectangular parallelepiped)
of ng X ny X n, size with edges oriented along coordinate axes x, y, z and
having nz, n, and n, numbers of unit segments in each edge, respectively.
Similarly, in 2D case graph G is a 2D grid of nodes (rectangle) of ng X ny size
with edges oriented along coordinate axes z, y and having n, and n, numbers
of unit segments in each edge, respectively. Structures of arcs assigned in G
in 2D and 3D cases are shown in Figures 1.10 and 1.11, respectively. A 2D
network with arcs structure, shown in Figure 1.10, contains (ng + 1)(ny + 1)
nodes and
2(8 ngny — ng — ny)

arcs, where ny > 1 and ny > 1. In 3D case the total number of nodes and
arcs in an undirected G with arcs structure, as shown in Figure 1.11, are (ng +
1)(ny + 1)(n, + 1) and

2(49 ngnyn, — 8ngny — 8ngn, — 8nyn, +ng +ny + Ny),

forny > 1,ny > l,andn, > 1. For instance, the case of ny = 1,ny = 1, and
n, = 1 corresponds to a single cube with 12 liner arcs, 12 planar arcs and 4
3D arcs (see Figure 1.11). All these numbers should be doubled due to “undi-
rectness” of the graph. Thus, the total number of arcs just in a single cube is
56. Moreover, in order to provide sufficient amount of feasible directions for
a trajectory (i.e. to avoid “naive discretization,” sometimes referred to as the
digitization bias, [18]), we assign not only axis and diagonal but also so-called
“long-diagonal” arcs connecting opposite vertexes of any two neighbor cubes
(see Figure 1.11). However, in this case, network structure becomes very con-
dense. For example, a relatively small 3D undirected network of 40 x 40 x 40
contains about 69,000 nodes and 6,200,000 arcs. It would be naive to assume
that even a very efficient NF algorithm is capable to find a constrained short-
est path in this network within seconds (at least at the current moment of the
technological progress). Obviously, a main task in this case is development of
efficient network structures with relatively small numbers of -arcs and nodes,
while preserving flexibility for trajectory approximation, rather than finding the
most efficient NF algorithm (although this is also a quite legitimate question).
However, the chapter only partially addresses the issue of efficient network
structures, since this is a separate subject for discussion, which calls for a sep-
arate publication. Zabarankin et al. [22] showed that existing NF algorithms
[7] are quite efficient in finding a constrained shortest path in a network with
about 100,000 arcs.

Smoothing procedure and curvature constraint. Number of arcs can signif-
icantly be reduced by smoothing network structure. Starting from both jo = A
and j, = B nodes along all directions outgoing from jo and jp, we retain only
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Figure 1.10. Structure of arcs in every node in a 2D network: “1” — axis arcs, “2” — diagonal

arcs, “3” — long diagonal arcs.

4 3D arcs in a cube

6 planar arcs in a cube

3 linear arcs in a cube

4 3D arcs in two cubes 2 diagonal arcs in two cubes

4 planar arcs in two cubes

Structure of arcs in every node in a 3D network.

Figure 1.11.
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those pairs of arcs, which produce the angle not greater than, for instance, 5
see Figure 1.12.

Let A; be the set of nodes connected to node 4. For instance, for 2D network
structure shown in Figure 1.10, set \; for each ¢ consists of 16 nodes producing
4 axis, 4 diagonal and 8 long diagonal arcs with node 4. Let 7;4 be a subgraph
starting from node jo = A along arc (jo, %), i € Nj,. Now TA = {jo,i}. If
j € N;/{jo} satisfies condition e;; - €;; > —‘é—g, where e;; is the unit vector
along arc (3, j), then j is added to the subgraph TA = TAU{j}. The next step
is to examine new added nodes, i.e. for all j € T;4/{jo,1} check e;; - ejx >
Y3 k € N;. If node k satisfies this condition then 7;4 = 7;* U {k} and so on.
T4 is full when there is no nodes left satisfying the condition. Similarly, we

1

construct 7;2 for all i € Nj,. Then the whole process is repeated for 7B

[/ .
. 3 1 e, >-L
ejk—ljk ejki 2 £ ejk—ljk elum =2 Jint

Je Jia !

Je-2

network smoothing curvature constraint

Figure 1.12. Network smoothing and curvature constraint.

To avoid sharp turns in aircraft trajectory, we may use a curvature constraint,
which also can be imposed by aircraft control limitations. Analytically, for any
given triad of arcs, curvature constraint is expressed by €, .5, _; * €jxjis1 =
cos a, where ¢, for instance, may be 7. In general, o should be a function of
the length of the middle arc (jx_1, jk), since a constant constraint on trajectory
curvature may prevent from obtaining an optimal solution.

Finding a globally optimal risk path subject to length constraint is the task
for NF optimization. Network structure smoothing will be integrated into a NF
algorithm as a condition eliminating inadmissible arcs in a network rather than
implemented as a separate procedure. Consequently, smoothing condition is
considered now as an adjustment for the NF algorithm rather than property of
network structure.
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4.2, Approximation Scheme

Several schemes for approximation of optimization problem (5) are avail-
able. We consider one of them. Let vector r;, with components z(3x), ¥(Ji)
and z(j) determine position of node ji. Then a path P = {rj1 S AR
is a piece-wise linear curve (broken line) with vertexes at points rj, , k=1,p.
Any point on the arc (ji_1, jx) can be defined by vector ry(t) = (1—t) rj,_, +
trj, witht € [0, 1]. Thus, length differential ds and derivative 1 for each arc
are -

e — i .
ds = |Itj, — T, lldt,  Ek= ﬁﬁ’ k=1p
k k~1

Using approximations for r, I and ds, functional (4) and trajectory length
are presented, respectively

P 1 p
F(r, i) ~ Z llrj, — rjk—1”/L (r(t), te) dt = Zc(rjk—l’ Tji)s (30).

Y4
1R ) Ieg = T Il 31)
k=1

where ||r;, = r;j,_,|| and C(rj,_,,1j,) are the length and risk index of the arc
(jk—1, k), respectively. To derive the formula for C(rj,_,,r;,) We compute
the risk accumulated along the arc (jx_1, jx) from the ith radar located at q; =
(a;, b;, ;). Substituting r;;(t) = ri(t) — q; into (2), we have

C(rje_y» Tj.)

2
g b O g, —ms D) T i)
=t 2 i ] @I ¢

2
2 sin?is i . ey o
o o B ey 507 Bip_ip HA2 Ly _y €08 Gi gy 15k HEASip_y iy

1
=ﬁ;€fz""iof S B

i=1 2 .2 ] L 3 )
B dp_y S0 bigp_1ict bijy_y €08 b, 155 HE BSji_q G

. (32)
where

b = lIvj — aill, Asjy g = lITj = Tieall
and ¢;, j,_,j. € [0, 7] is the angle between vectors rj, , — q; and rj, —rj,_,
(see Figure 1.13), i.e.
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r . — . - r . — r .
Bi. ju_1jn = BICCOS (( i1 — i) (T 3k-1)) .
sy — sl llrs, — Tyl

Figure 1.13 illustrates a 3D network for solving the risk minimization prob-

lem. Broken line AB is a path in the area with the i*" radar, while As;, _, j, is

the length of arc (jx_1, jx) between nodes ji_1 and ji in this path. Magnitude

i, ju_14, is the angle between vector rj, _, — q; and arc (jk—1, Jjx) directed
from node jx.-1 to node ji.

\
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Figure 1.18. 3D network for solving the risk minimization problem — broken line AB is a
path of the aircraft.

Integral (32) can efficiently be approximated by the Gaussian quadrature. If
f(t) is a bounded smooth function on [0, 1] then the Gaussian quadrature is

1 J
JECEID MO}
0 5=1

where h; and t; € [0,1] are known for any given J. For instance, Table 1.2
presents values ¢; and weight coefficients h; for the Gaussian quadrature for
J =16. '

Consequently, using a direct method of Calculus of Variations, problem (5)
is approximated by '
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7]

h;

- I I Y R R e

bk pak ek ek ket
N D WN =

0.048307665687738316235
0.144471961582796493485
0.239287362252137074545
0.331868602282127649780
0.421351276130635345364
0.506899908932229390024
0.587715757240762329041
0.663044266930215200975
0.732182118740289680387
0.794483795967942406963
0.849367613732569970134
0.896321155766052123965
0.934906075937739689171
0.964762255587506430774
0.985611511545268335400
0.997263861849481563545

0.096540088514727800567
0.095638720079274859419
0.093844399080804565639
0.091173878695763884713
0.087652093004403811143
0.083311924226946755222
0.078193895787070306472
0.072345794108848506225
0.065822222776361846838
0.058684093478535547145
0.050998059263376176196
0.042835898022226680657
0.034273862913021433103
0.025392065309262059456
0.016274394730905670605
0.007018610009470096600

Y4
n}%n > C(rjk—l’ rjk)
k=1

p
st 3 |Irg —
k=1

rjk—l” <l

Table 1.2. Values t; and weight coefficients h; for the Gaussian quadrature for J = 16.

(33)

Tjo = TA, I‘jp =rg.

If for all k = 1, p, r;, is variable (not fixed in nodes of a network), then, in
P
the case of active constraint ) ||r;, — rj,_,[| = s, optimality conditions for

k=1
(33) can be derived by standard calculus

0

orj, 34

(C(rjk-urjk) + c(rjk’rjk+1)) = (ejk—-l Jx ~ €k jk+1) )

where k = 1, (p — 1), 7 is the Lagrange multiplier for the constraint in (33) and

€jp_1ir = :: ::’;“ . System (34) may be solved numerically by a gradient-
—~1

based algorithm. However, in this case, we most likely obtain only locally

optimal solution. Moreover, instead of solving (34) we could numerically solve

differential equation (7).
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4.3. Reduction to the Constrained Shortest
Path Problem

To formulate (33) as a network flow optimization problem, let

Cix—1 3k = C(Tje_1sTir ), Asjy_yjx = [It5 = Tyl

and values R(P) and I(P) define the total cost (risk) and weight (length) ac-
cumulated along the path P, respectively,

P p
R(P) = Z Cjk—1 Jk> UP) = Z ASjy ji-

Thus, each arc (jx—1,Jx) € A is associated with its length As;, _, ;. and
nonnegative cost c;,_, j,- The path P is weight feasible if the total weight {(P)
is at most I, i.e. [(P) < l.. Consequently, the CSPP is finding such a feasible
path P from point A to point B that minimizes cost R(P)

y 4
n’%n > Cik1 dk
k;l
s. t. z A.S‘jk_l i < ly.
k=1

The difference between (33) and (35) is that (33) still preserves analytical
properties of the risk and length, whereas (35) completely “forgets™ about the
nature of obtained cj,_, j, and Asj, _, j, values. The CSPP (35) is closely re-
lated to the Shortest Path Problem with Time Windows (SPPTW) and also to
the Resource Constrained Shortest Path Problem (RCSPP), which uses a vector
of weights, or resources, rather than a scalar. These problems are solved in col-
umn generation approaches for Vehicle Routing Problems with Time Windows
(VRPTW) and in long-haul aircraft routing problems. Under the assumption
of cost and weight integrality, the CSPP was shown to be a NP-hard problem
[8]. It means that in a worse case, the CSPP is solved in time exponentially
depending on the number of arcs. Algorithms for solving the CSPP are divided
into three major categories:

(35)

» Label-setting algorithms based on dynamic programming methods
m Scaling algorithms
m Algorithms based on the Lagrangean relaxation approach

The label setting algorithm is the most efficient in the case when the weights
are positive [6]. The Lagrangean relaxation algorithm is based on the subgra-
dient optimization [2] and cutting plane [10] methods, and efficient for solving




38

the Lagrangean dual problem of the CSPP in the case of one resource. Scal-
ing algorithms use two fully polynomial approximation schemes for the CSPP
based on cost scaling and rounding [11]. The first scheme is a geometric bi-
section search whereas the second one iteratively extends paths. We solve the
CSPP (35) by the Label Setting Algorithm (LSA) with a preprocessing proce-
dure [8].

4.4. The Label Settings Algorithm with
Preprocessing Procedure

The Preprocessing Procedure and Label Setting Algorithm (LSA) are two
consecutive stages in finding a constrained shortest path. The objective of
preprocessing is to reduce the original graph by eliminating all arcs and nodes
such that any path containing them is infeasible or does not improve current
cost upper bound. To discuss the algorithm in detail, let us denote the arc’s
nodes jx_1 and ji by i and 7, respectively. For each node i, we consider the
path obtained by appending the least cost path from the source node s to ¢ to the
least cost path from i to the sink node ¢. If the total cost accumulated along the
new path is at least the current cost upper bound, then the use of node ¢ cannot
improve a known feasible solution. Hence, node ¢ and all arcs incident to it can
be deleted from the graph. If the total cost is less than the upper bound and the
path is feasible, then the upper bound can be updated and the process continues
with the improved upper bound. Similar, for each arc (i, j), we consider the
path obtained by appending the least cost path from s to ¢ to the least cost path
from j to t, via arc (i, ). If the total cost accumulated along the new path
is at least equal to the current cost upper bound, then we can delete arc (i, j)
from the graph. If the total cost is less than the upper bound and the path is
feasible then the upper bound can be updated. The preprocessing procedure is
presented in the pseudo-code form below.

Preprocessing Algorithm for the CSPP

Step 0: LetU = C(n — 1) where C = max c;;.
_ (i) eA
Step 1: Find the minimum cost paths from source node s = A with arc costs
given by c;;. Let QF; be the least cost path from s to j and o
be the cost of the path of = R(Qg;)-
If there is no path from s to the s1nk node ¢t = B then stop;
the problem is infeasible.
If 1(Q%,) < I, then QS, is the optimal path.

Step 2: Find the minimum cost paths from all nodes to ¢ with arc costs given
by ¢;;. Let Q;?t be the least cost path from j to ¢ and 3} be the
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cost of the path: 5] = R(Q%,).

Step 3: Find the minimum length paths from s to all nodes with arc lengths
given by As;;. Q' is the minimum length path from s to j and al is
the length of this path: of, = I(Q%,).
If I(QL,) > I, then stop; the problem is infeasible.
If1(QL,) < I, and R(QL,) < U then set U = R(QL;).

Step 4: Find the minimum length paths from all nodes to ¢ with the arc lengths
given by As;;. Qgt is the least length path from j to ¢ and ,B;-
is the length of this path: 8} = 1(Q%,).

Step 5: Forall j € V\{s,t} do
if o}, + B > I, then delete node j and all arcs incident o it;
if of + G5 =2 U then delete node j and all arcs incident to it;
end

Step 6: For all (i, j) € A do
if o} + As;; + 85 > . then delete (i, j)
else if f + c;; + 5 > U then delete (i, 7)
else if 1(QF;) + Asi; + 1(Q5;) < L then U = of + ¢ij + 55
end

Step 7: If during steps S and 6 the graph changed then goto Step 1,
else set L = of and stop.

End.

The next stage after the preprocessing procedure is the Label Setting Algo-
rithm. The idea of the algorithm is to use a set of labels for each node and
~ compare the labels to one another. Each label on a node represents a different

path from node s to that node and consists of a pair of numbers representing the
cost and weight of the corresponding path. No labels having the same cost are
stored and for each label on a node, any other label on that node with a lower
cost must have a greater weight. Let I; be the index set of labels on node 7 and
for each k € I; let PF denote a path from s to i with weight WF and cost CF.
Pair (W}, CF) is the label of node ¢ and PF is the path corresponding to it. For
two labels (WY, CF) and (W], C}), corresponding to two different paths Pk
and PY, respectively, (W, CZ‘ dominates (W7, C7) if WF < Wi, CF < C},
and the labels are not equal. Label (W}, CF) is efficient if it is not dominated
by any other label at node i, i. e. if (I(P), R(P)) does not dominate (W, CF)
for all paths P from s to i. A path is efficient if the label it corresponds to is
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efficient. The LSA finds all efficient labels in every node. Starting without any
labels on any node, except for label (0, 0) on node s, the algorithm extends the
set of all labels by treating an existing label on a node, that is, by extending
the corresponding path along all outgoing arcs. Let L; be the set of labels on
node i and let T; C I; index the labels on node ¢, which have been treated. The
algorithm proceeds until all labels have been treated, i.e. until I\T; = 0 for
alli € V\{t}. ,

The Label Setting Algorithm (LSA) with smoothing condition

Step 0: /Initialization
Run Preprocessing Algorithm for the CSPP to find U, 35, ﬂ;-
and Q% Vj€ V\{t}.
Set Ls = {(0, 0)} and L; = @ for all i € V'\{s}.
Initialize I; accordingly for eachi € V.
SetT; = @ foreachi € V.

S‘tep 1: Selection of the label to be treated

If |J (I;\T:) = 0 then stop; all efficient labels have been generated.
eV
Else choose i € V and k € I;\T; so that WF is minimal.

Step 2: Treatment of label (WF, CF)
Forall (i, j) € Ado
Xf (€(cs); - €ij > €) I*smoothing condition: € = %3; (i) is
a predecessor node */
If (WF + Asij + 4 < L)
If (CF + cij + B < U)
If (WE + As;j, CF + ¢;5) is not dominated
by (W],CJ) Vgel;
then set L; = L; U {(WF + Asyj, Cf + cij)}
and update I;
If (WF + Asij +1(Q5) < L) then U = CF + ¢i5 + 5.
end

Step 3: Set T; = T; U {k}, goto to Step 1.

End.
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5. Numerical Experiments

Zabarankin et al. [22] demonstrated efficiency of the NF optimization ap-
proach in optimal trajectory generation in 2D space with arbitrary number of
sensors (n = 2) for the case of sphere (x = 1). This section tests complexity of
the CSPP (35) and flexibility of the proposed 3D network structure in optimal
trajectory generation with variable aircraft RCS in 3D space. We computed
discrete solutions using 2D and 3D networks for the same data considered in
Examples 2 and 3 in the case of a single radar (n = 4). Radar position, co-
ordinates of points A and B and testing values for a constraint on trajectory
length are exactly the same. In 3D case, the CSPP was solved by the LSA with
and without smoothing condition. All calculations were conducted using a PC
with Xeon 3.08 GHz and 3.37 Gb of RAM.

We used 2D and 3D networks, with structures as shown in Figures 1.10 and
1.11, to compare discrete optimization trajectories with analytical ones in the
case of a single radar. 2D network is a special case of 3D one with n, = 0. It
tests discrete solutions in the trajectories’ plane determined by points A, B and
(0,0, 0) (radar position). We associate nodes of a 3D graph with integer vectors
(4, 7, k) forming 3D integer grid. Consequently, the set of arcs lengths in an
integer grid with structure as shown in Figure 1.11 is {1, V2,3, V5,6, 3}.
In assigning real arc length, all these values are scaled by an appropriate co-
efficient depending on actual size of a network. In order to reduce compu-
tational time, we approximated arcs lengths by the set of integer numbers
{1000, 1414, 1732, 2236, 2449, 3000}. In this case, the scaling coefficient is
adjusted correspondingly. Finding a constrained shortest path in a network
with the integer lengths of arcs is approximately 1.5 times faster than the same
procedure with real lengths of arcs. However, due to the integer approximation
of arcs lengths, the actual length of a constrained shortest paths in a network
may be slightly greater than assigned length constraints, while the correspond-
ing optimal risk value may be lesser than the one obtained by analytical so-
lutions approach. In tables presenting results of network flow optimization,
optimal risk values, obtained by network optimization and inconsistent with
“true” ones in the discussed sense, are marked by  symbol.

We calculated constrained shortest paths depending on ellipsoid shape (pa-
rameter x) and length constraint, [, and compared optimal risk values Rgp and
Rs3p (in 2D and 3D network optimization, respectively) with the “true” ones,
obtained by analytical solutions approach. Values of lsp and I3p are lengths
of constrained shortest paths in 2D and 3D cases, respectively. We were in-
terested in the following parameters: number of nodes left after preprocessing,
Nprep, cost upper bound in preprocessing, U, preprocessing time, Tprep, nUM-
ber of labels treated in the LSA, Njpers, and running time of the LSA, Trs4,
measured in seconds. All these parameters are helpful in evaluating perfor-
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mance of the discrete optimization approach. We analyzed the impact of using
smoothing condition on accuracy of discrete solutions and LSA running time
in 3D case.

5.1. 2D Network Optimization in the Case of a
Single Radar

To calculate 2D optimal trajectories for the cases considered in Examples 2
and 3, we used a 2D squared graph with the following parameters

Size of the graph = 2.3 x23
ngXny, = 46x46
Length of axis arcs = 2.3/46 = 0.05
Numberofnodes = (46 + 1)% = 2209
Numberofarcs = 33672
Radar position = (0,0)

PointA = (—0.25,0.25)
PointB = (1.75,0.25)

Numerical results of 2D network optimization for different values of « and
I, are presented in Tables 1.3 and 1.4. Figures 1.14 and 1.15 compare analytical
and discrete optimization solutions in 2D space with parameters: a)n = 4, kK =
1.0, I, = 2.6, 3.2, 4.0; and b) n = 4, k = 0.1, 2.0, L, = 3.2, respectively. The
smooth curves are the optimal trajectories obtained by the analytical approach
and the nonsmooth curves are those obtained by solving the CSPP. Analytical
and corresponding discrete optimization trajectories are close to each other,
which validates both approaches. Note for the case of k = 10.0, values of
optimal risk for discrete trajectories in Tables 1.3, 1.4, 1.5, 1.6 and 1.7 are
lesser than the risk value for the corresponding analytical solution. Due to
integer approximation of arcs lengths, the total length of those paths are greater
than their integer representations. ‘

Table 1.3. Results of 2D network preprocessing: single radar.

K le True Risk U Npr  Tpr, seC
1.0 26 9792116 91.336509 837  0.359
1.0 3.2 8421726 91.336509 1260 0.313
1.0 4.0 7966210 35.693792 1703 0.500
0.1 32 0.468371 15942982 1281 0.484
0.5 3.2 3980716 66.836609 1265 0.329
2.0 3.2 12464087 12.858975 764  0.547
10.0 3.2 14.845494 14.842421 42 0.359




Optimal Path Planning in a Threat Environment

Table 1.4. Results of 2D network optimization with LSA: single radar.
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K L. True Risk lap Rop Nigets TLsa, sec
1.0 26 9.792116 2.592 9.983805 85461 0.609
1.0 3.2 8.421726 3.1995 8.504245 224524 2.047
1.0 4.0 7.966210 3.9933 8.004489 423056 4.750
0.1 3.2 0.468371 3.199 0.488162 329517 3.641
0.5 3.2 3980716 3.1932 4.063807 292594 2.922
2.0 3.2 12.464087 3.1958 12518963 60619 0.406
10.0 3.2 14.845494 3.1958 14.84242f 0 0

¥
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Figure 1.1{. Comparison of analytical and discrete optimization trajectories for the case of
sphere (k = 1.0), n = 4 and different length constraints, ., in trajectories’ plane.
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Figure 1.15. Comparison of analytical and discrete optimization trajectories for elongated
(x = 0.1) and compressed (x = 2.0) ellipsoids for n = 4 and the same constraint on the length
l. = 3.2 in trajectories’ plane.

5.2. 3D Network Optimization in the Case of a
Single Radar

For 3D network optimization with the data from Examples 2 and 3, we used
a parallelepiped graph with parameters

2.3 x 1.0 x 1.25
46 x 20 x 25
2.3/46 = 1.0/20 = 1.25/25 = 0.05

Size of the graph
Ty X Ny X Ny
Length of axis arcs

Number of nodes = (46 + 1)(20 + 1)(25 + 1) = 25662
Numberofarcs = 2213062
Radar position = (0,0,0)
PointA = (-0.25,0.15,0.2)
PointB = (1.75,0.15,0.2)

Numerical results of 3D network optimization with and without network
structure smoothing for different values of « and I, are presented in Tables 1.5,
1.6 and 1.7. Figures 1.16, 1.17 and 1.18 compare the analytical and discrete
optimization solutions in 3D space for the following sets of parameters: a) n =
4,k =101,=26,32,40;b)n=4,k =011, =32;andc) n = 4,
k = 2.0, L, = 3.2, respectively.
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Table 1.5. Results of 3D network preprocessing: single radar.

K L. True Risk U Npr Ty, sec
10 26 9.792116 91.336509 11518 9.516
1.0 3.2 8.421726 91.336509 22521 14.234
1.0 4.0 7.966210 8.902138 21175 18.031
0.1 3.2 0.468371 15.042982 22598 16.094
0.5 3.2 3980716 66.836609 22553 14.875
20 3.2 12464087 12969952 15543 22.187

10.0 3.2 14.845494 14.840356' 2873 12.781

Table 1.6. Results of 3D network optimization with LSA: single radar.

K le True Risk lap Rap Nigbels TLsa, sec
1.0 26 9792116 25998 10.251423 1936613  766.704
1.0 3.2 8421726 3.19805 8.525182 6644608 6597.750
1.0 4.0 7966210 3.9997 8.040955 8066613 7252.609
‘0.1 32 0.468371 3.1987 0.554746 9930869 11519.922
0.5 3.2 3980716  3.1963 4.11088 8427875 9069.281
20 3.2 12464087 3.19895 12529767 2529266 1220.188
10.0 3.2 14.845494 3.1953 14.83876' 132135 8.031
Table 1.7. Results of 3D network optimization with LSA & smoothing condition: single
radar.
K l. True Risk lap Rsp Niatets  TLsa, sec
1.0 26 9792116 25998 10.251423 1080091 299.735
1.0 3.2 8421726 3.19645 8.526340 4841651 4286.844
1.0 40 7.966210 3.9981 8.041533 6849799 5937.016
0.1 3.2 0468371 3.19925 0.55662 5262314 5066.953
0.5 3.2 3980716 3.1986 4.123165 5091681 4715.875
2.0 3.2 12464087 3.1998 12.530477 2015458 846.672
10.0 3.2 14.845494 3.1953 14.83876! 76150 4.516
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Figure 1.16. Comparison of analytical and discrete optimization trajectories for sphere (x =
1.0), n = 4 with different length constraints, ., in 3D space.

Figure 1.17. Comparison of analytical and discrete optimization trajectories for elongated
ellipsoid « = 0.1 and parameters n = 4, l. = 3.2 in 3D space.
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Figure 1.18. Comparison of analytical and discrete optimization trajectories for compressed
ellipsoid & = 2.0 and parameters n = 4, l. = 3.2 in 3D space.

5.3. 3D Network Optimization in Cases with
Two and Three Radars

This section analyzes impact of variable RCS in the case of several radars
on: a) geomety of optimal trajectories; and b) performance of the discrete
optimization approach. For optimal trajectory generation in the cases with two
and three radars, we used the same 3D network of 2.3 x 1.0 x 1.25 with the
corresponding integer grid ny X ny X ny = 46 x 20 x 25 and the following
data for radars positions and staring and ending trajectory points

Radarl = (1,0,0) PointA = (0,0.5,0)
Radar2 = (0.5,1,0) PointB = (2,0.5,0)
and
Radarl = (1,0,0) PointA = (0,0.75, 0)
Radar2 = (0.5,1.25,0) PointB = (2,0.75,0)
Radar3 =  (1.5,1,0)

Numerical results of 3D network preprocessing and optimization in the
cases of two and three radars with and without network structure smoothing
for different values of x and the same constraint on the length, [, = 3.2, are
presented in Tables 1.8, 1.9, 1.10 and 1.11. Figures 1.19-1.24 illustrate dis-
crete optimization trajectories in 3D space with two and three radars for the
following parameters: n = 4, [, = 3.2, k = 0.1, 1.0, 2.0. ‘
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Table 1.8. Results of 3D network preprocessing: two radars

Kl U Npr Ty, seC
0.1 3.2 3086443 20342 16.547
1.0 3.2 15367339 19267 12.766
20 3.2 15968 16.828

7.535904

£

Table 1.9. Results of 3D netWork optimization: two radars (*smoothing is used)

£ L l3p Rsp Nigvets  TLsa, sec
0.1 3.2 3.19885 0.921916 9993019 9837.906
1.0 3.2 3.1993 4.891124 6737166 5392.109
20 32 3.1993 4.320838 3617699 2010.750
*0.1 3.2 3.1993 0.922975 6428635 5556.891
*1.0 3.2 3.1993 4.891411 5095577 3708.437
*20 3.2 3.19785 4.330046 2818012 1335.859

Table 1.10. Results of 3D network preprocessing: three radars

K

le

U

Npr  Tpr, sec

0.1
1.0
2.0

3.2 19.374493
3.2 28.740118
3.2 22262851

20766
19660
18377

14.718
16.641
15.625

Table 1.11. Results of 3D network optimization: three radars (*smoothing is used)

K

L

I3p

Rs3p

Nigbets

Trsa, sec

0.1
1.0
2.0
*0.1
*1.0
*2.0

3.2
3.2
3.2
3.2
3.2
3.2

3.19995
3.19905
3.19905
3.19995
3.197
3.19905

1.635309
8.073111
8.62298
1.639800
9.094264
8.62298

7898013
5623460
3982280
5296123
4413319
3155044

6733.031
3998.969
2285.640
4056.406
2916.281
1634.031




Optimal Path Planning in a Threat Environment 49

——— ~
~
~

Radar 2'\\\\

———
——
—

Figure 1.19. Optimal trajectories in the case of two radars for compressed ellipsoid (£ =
2.0), sphere (x = 1.0) and elongated ellipsoid (« = 0.1) with the same length constraint,

l* =3.2.
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Figure 1.20. Front view: optimal trajectories in the case of two radars for compressed el-
lipsoid (x = 2.0), sphere (x = 1.0) and elongated ellipsoid (x = 0.1) with the same length

constraint, [, = 3.2,
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Figure 1.21. View from above: optixﬁal trajectories in the case of two radars for compressed
ellipsoid (x = 2.0), sphere (x = 1.0) and elongated ellipsoid (x = 0.1) with the same length
constraint, l. = 3.2.

Figure 1 .22. Optimal trajectories in the case of three radars for compressed ellipsoid (x =
2.0), sphere (x = 1.0) and elongated ellipsoid (x = 0.1) with the same length constraint,
l.=3.2.
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Figure 1.23. Front view: optimal trajectories in the case of three radars for compressed el-
lipsoid (x = 2.0), sphere (x = 1.0) and elongated ellipsoid (x = 0.1) with the same length
constraint, [, = 3.2.
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Figure 1.24. Side view: optimal trajectories in the case of three radars for compressed el- -

lipsoid (¢ = 2.0), sphere (x = 1.0) and elongated ellipsoid (x = 0.1) with the same length
constraint, [, = 3.2. '
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w There is no strong correlation between LSA running time and number of
radars; depending on ellipsoid shape it may decrease (x = 1.0), increase
(k = 2.0) or variate (x = 1.0).

» Running time of preprocessing procedure is always small (10-20 sec
in 3D case), which in most testing examples is less than 2% of total
computational time, and indicates no predictive power for LSA running
time. However, number of nodes left after preprocessing is helpful in
evaluating expected LSA running time. Also, testing examples suggest
that LSA running time may linearly depend on number of treated labels.
Although this number is known only after the algorithm stops, it can be
used as a reference value for another run.

» In both examples with several radars, optimal trajectories for different
values of parameter  (ellipsoid shape), subject to the same constraint
on trajectory length, are again close to each other (the same phenomenon
was observed by comparing analytical trajectories in the case of a single
radar).
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10000¢
8000
6000
4000}

2000¢

B K

2 4 6 8 10

Figure 1.25. Dependence of LSA running time on the shape of ellipsoid, < (3D network,
single radar): curve “1” — no smoothing, curve “2” — smoothing is used.

Figure 1.25 shows dependence of LSA running time on the shape of ellip-
soid, k, in the case of 3D space and a single radar with and without network
smoothing. The excessive running time for the LSA in the case of very elon-
gated ellipsoids, (k << 1, ellipsoid with £ = 0.1 is almost a needle), can be
explained by lowest risk accumulations in directions radial to a radar, which
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are ones producing greatest total lengths from point A to point B. This com-
plicates comparison of labels in risk minimization, while balancing length con-
straint. This idea is supported by the fact that the running time in generating
optimal trajectory for a compressed ellipsoid with x = 10.0 is just several sec-
onds. In this case, because of compressed geometry (for instance, a disk flying
along its axis of symmetry), the risk of detection accumulates slower in direc-
tions transversal to a radar and those direction are the ones producing lowest
total lengths from point A to point B. It is worth to mention that for small
values of x, network smoothing reduces LSA running time more efficiently.

Running time analysis. Figure 1.26 illustrates dependence of LSA running
time, Tr.s4, on number of labels treated, Njgpels, in a 3D network for a sin-
gle radar and various « and [, with and without smoothing. Variations of
and [, have no strong effect on LSA running time because of the preprocess-
ing procedure. The running time is almost linearly depends on the number of
labels treated, which, in turn, is a function of number of nodes left after pre-
processing, Ny, smoothing condition and cost upper bound, U, obtained in
preprocessing. Figure 1.27 shows strong correlation between Nigpers and Ny,
plotted for all x and I, in the case of a single radar. While Njgpets is uniformly
reduced by smoothing condition, it may be quite different for the same value
of N, because of different cost upper bounds obtained in preprocessing. Ob-
viously, the closer U to optimal cost is, the lower number of labels will be
treated. According to results presented in Tables 1.3, 1.5, 1.9 and 1.11, cost
upper bounds are not close enough to “true” risk values. This fact suggests to
develop preprocessing procedures obtaining more accurate cost upper bounds.
Such preprocessing may be based on Lagrange relaxation [10, 11].

7. Conclusions

We developed a three-dimensional deterministic model for routing an air-
craft with a variable radar cross-section (RCS) in a threat environment. The
threat is associated with the risk of detection by radars, sensors or surface air
missiles. To investigate dependence of the risk of detection on variable RCS,
we model the aircraft by a symmetrical ellipsoid with the axis of symmetry ori-
enting trajectory direction. The model considers the risk of detection to be the
sum of risks from all installations in the area of interest, where the risk to be
detected by a particular installation is proportional to the area of ellipsoid pro-
jection and reciprocal to the ntt-power of the distance between the aircraft and
this particular installation. We developed analytical and discrete optimization
approaches for solving the risk minimization problem subject to a constraint
on trajectory length.

The analytical approach, based on calculus of variations, reduces the origi-
nal problem to solving the vectorial nonlinear differential equation. We derived
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Figure 1.26. LSA running time versus number of labels treated: 3D network, single radar.
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Figure 1.27. Number of labels treated versus number of nodes left after preprocessing (3D
network, single radar): curves “1” and “2” correspond to LSA and LSA with smoothing, re-

spectively.
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this equation based on a general form of the risk functional in the case with an
arbitrary number of passive or active installations. For the case of a single
installation, arbitrary ellipsoid shape and any n, we obtained an analytical so-
lution to the vectorial differential equation, which is expressed by a quadrature.
According to numerical experiments based on the analytical solutions, we con-
clude that

= Complexity of solving the vectorial differential equation analytically is
primarily determined by the number of installations in the area of interest
and is not affected by the type of an installation (radar or sensor).

m In the case of a single installation:

— An analytical solution is expressed by a quadrature and correspond-
ing optimal trajectory is a planar curve within the plane defined by
starting and finishing trajectory’s points and the radar’s position.

—~ The model with constant RCS (“spherical” aircraft, k = 1.0) es-
sentially simplifies obtaining an analytical solution and its further
numerical analysis.

m The optimal risk is more sensitive to the variation of ellipsoid shape than
to the variation of trajectory total length.

m Optimal trajectories for different x (especially for k > 1) are close to
each other, which indicates that a variation of ellipsoid shape has no
strong effect on the geometry of an optimal trajectory.

= Within proximity to an installation, an optimal trajectory is more sensi-
tive to a radar-installation than to a sensor-installation and in area remote
from the installation the effect is opposite.

Obtaining an analytical solution to the vectorial differential equation in the
case with an arbitrary number of installations is still an open issue. However,
availability of an analytical solution in the case of a single installation signifi-
cantly facilitates conceptual understanding the impact of variable RCS on the
geometry of optimal trajectories and testing discrete optimization approaches.

To address optimal trajectory generation in 3D space in the case of vari-
able RCS and arbitrary number of radars, we developed discrete optimization
approach based on network flow optimization. Approximating the area of in-
terest by a 3D network with a flexible structure and presenting a trajectory by
a path in this network, NF optimization reduced optimal risk path generation
with a constraint on trajectory length to the Constrained Shortest Path Problem
(CSPP). We suggested to solve the CSPP by Label Setting Algorithm (LSA)
with network smoothing, which is considered as an adjustment for the algo-
rithm rather than a property of network structure. This condition, intended for
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preserving trajectory smoothness and, as a result, eliminating inadmissible arcs
in the network, can be used as a necessary constraint in trajectory generation.
We tested NF optimization approach for 2D and 3D networks with and with-
out smoothing condition, with various ellipsoid shapes, several constraints on
trajectory length in the cases with one, two and three radars. Based on compu-
tational results of testing examples, we made the following conclusions

» In the case of a single radar, all optimal trajectories obtained by the dis-
crete approach for various x and l, are sufficiently close to the corre-
sponding analytical trajectories.

» Network smoothing condition reduces LSA running time by 1.5-2.5
times, while preserving accuracy of optimal trajectories.

» LSA generates 2D discrete trajectories within a few seconds.

» LSA running time is extremely sensitive to the shape of ellipsoid; in 3D
case, it varies from 5 to 5000 sec for0.1 < k < 10.0.

» In testing examples with two and three radars, optimal trajectories with
the same constraint on the length but different ellipsoid shapes are rela-
tively close to each other, which suggests that in general, ellipsoid shape
has no strong effect on the geometry of an optimal trajectory.

L] Runhing time of the algorithm strongly depends on the value of trajec-
tory length constraint.

This chapter introduced 3D analytical model addressing optimal trajectory
generation with variable RCS subject to a constraint on trajectory length. De-
veloped analytical and discrete optimization approaches are just a first step in
solving the proposed model rather than exhaustive answer to this matter. In 3D
case, other NF algorithms for solving the CSPP as well as other approximation
schemes for the original risk minimization problem may be addressed.

Appendix: Minimization of a Functional with Non-
holonomic Constraint and Movable End Point

This section reduces necessary conditions for minimization of a functional with a nonholo-
nomic constraint and a moveable end point to a vectorial nonlinear differential equation. This
equation plays a central role in solving (5) in the case of a single radar. We consider the follow-
ing general formulation

min &{r, 1), (LA])
r
L
&(r,i,0) = L(r(s),i(s))ds, (1.A2)
0 .
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r(0) =r1, r(l)=rs, (1.A3)
p (k(s)) =0, (1.A4)
1<, (1.A.5)

where r(s) = ((s), y(s), 2(s)), £(s) = (&(s), 9(s), 2(s))-

A necessary condition for the existence of a functional extremum requires the total variation
of the functional to be equal to zero. However, because of constraint (1.A.5), (1.A.1D-(1.A5)
is the problem with the movable end point, r(l), which means that variation of the total curve
length, £, is not zero. Note variations §z, 8y and 8z are dependant by virtue of nonholonomic
constraint (1.A.4). Lagrange multiplier method is used to separate differential expressions in
the functional variation. '

Let 8t = (8z, 8y, 6z), OF = (62,69, 2), 3& = (&, %L, %) and %% = (55, %5, 50)
Applying the Lagrange multiplier method to problem (1.A.1}—( 1.A.2) with constraint (1.A.4),

!
the functional (1.A.2) is rewritten as ®(L, ¢, A\, 1) = (L(r, ) + A(s) #(£)) ds. By definition
0

the variation of this functional is

!
6 = (SL(r,i) + A3g(F) + $dN)ds + (L+ A¢)|,—, 8
0
1
=, 9L .5r+ 9L .5k + M52 -6t +¢8X ds+ (L+Ag)|, 0
1
=, oL _ 48L _ 4 38 .grigohds+ GEH+AGE cor
+ (L 4+ X)), 0L
Note ér|,_, # 0, since [ is varied and s = [ is not anymore a boundary point. Based on

boundary conditions (1.A.3), the variation dr at the starting and finishing points s = 0 and
s = 1 + &1, respectively, should be zero, i.e. 6r(0) = 0 and ér(l + §l) = 0. The last condition
is used to calculate the variation dr at s = . Namely, from ér(l + 8I) = dr(l) + 6l = 0 we
obtain ér(l) = —i &l. Using the last equality, the variation §@ is rearranged in the form

[l
&b = . %-%%’g—f—s 282 or+¢oX ds
+ L+rg— GE+aGE or 0l

Since after relaxing constraint (1.A.4), all three variations (dz, 8y, 6z) became independent,
the necessary conditions for an extremum, i.e. §& = 0, are reduced to the constraint (1.A.4)
" and the following equations

BL_d% 213 - (LA6)
and oL . 8¢
L - -a_i.-+)‘—6—i. .r =0. (1.A.7)

=l
Vectorial equation (1.A.6) has the first integral. Indeed, the scalar product of (1.A.6) with T
gives

Or dsor ds or
The left-hand side of this equality is a total differential, which after integration becomes

-2k 5.9

BF Fn = const. Q1 .A.8)
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Lagrange multiplier, A(s), is derived from (1.A.8)

. 8L . 0¢
- . ik ot 1.A.
A(s) L-7 B +ecr L (1.A9)
where ¢z, = —const is an unknown constant. Substitution of (1.A.9) into (1.A.6) leads to the

vectorial differential equation for determining optimal r

8L d oL, % . 0L B
E——JS— _6_1"+-i-—_%§ L—l"—a‘}'+CL‘ —0, - (1.LA.10)

which along with the constraint (1.A.4) and boundary conditions (1.A.3) are necessary condi-
tions for an extremum. Note that equations (1.A.10) and (1.A.4) are dependent in the sense
that the scalar product of (1.A.10) with # is reduced to ¥ - %? = 0, which is the differential of
(1.A4).

In the case when constraint [ < [, is active, i. €. | = l«, equation (1.A.7) is excluded from
determining an optimal solution, since in this case curve total length is fixed and, therefore, the
variation 8! should equal zero by definition. If constraint | < I, is inactive, then from (1.A.7)
and (1.A.8) we have ¢ = 0.

However, (1.A.10) with (1.A.4) and (1.A.3) are only the necessary conditions for an optimal
solution to solve minimization problem (1.A.1)-(1.A.5), since (1.A.10), (1.A.4) and (1.A.3) find
an extremal trajectory, which either minimizes or maximizes the functional.

In the case of active length constraint (variation 8! is zero), sufficient condition for an ex-
tremal, r*, minimizing functional (1.A.2) is formulated
for all r sufficiently close tor* and

() allt sufficiently close to i* (weak minimum);

(b) allr (strong minimum);
the following relation holds

L l
(L(r,#) + X*¢(#))ds >  (L(x",1") + A"¢(¥*)) ds,

[ 0

where \* is given by (1.A.9) calculated at r*. This condition is reduced to verification of wether
the second variation of the functional ®(L, ¢, \*, 1} at r* is greater than or equal to zero.
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Part 2: Robust Decision Making:
Addressing Uncertainties In Dis-
tributions
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1. Introduction

This study develops a general approach to managing risk in military
~ applications involving stochasticity and uncertainties in distributions.
Various military applications such as intelligence, surveillance, planning,
scheduling etc., involve decision making in dynamic, distributed, and un-
certain environments. In a large system, multiple sensors may provide
incomplete, conflicting, or overlapping data. Moreover, some compo-
nents or sensors may degrade or become completely unavailable (failures,
weather conditions, battle damage). Uncertainties in combat environ-
ment induce different kinds of risks that components, sensors or armed
units are exposed to, such as the risk to be damaged or destroyed, risk
of mission incompleteness (e.g., missing a target) or failure, risk of false
target attack etc. Therefore, planning and operating in stochastic and
uncertain conditions of a modern combat require robust decision-making
procedures. Such procedures must take into account the stochastic na-
ture of risk-inducing factors, and generate decisions that are not only ef-
fective on average (in other words, have good “expected” performance),
but also safe enough under a wide range of possible scenarios. In this
regard, risk management in military applications is similar to practices
in other fields such as finance, nuclear safety, etc., where decisions tar-
geted only at achieving the maximal expected performance may lead to
an excessive risk exposure. However, in contrast to other applications,
distributions of the stochastic risk-inducing factors are often unknown
or uncertain in military problems. Uncertainty in distributions of risk
parameters may be caused by a lack of data, unreliability of data, or
the specific nature of a risk factor (e.g., in different circumstances a risk
factor may exhibit different stochastic behavior). Therefore, decision
making in military applications must account for uncertainties in dis-
tributions of stochastic parameters and be robust with respect to these
uncertainties. ' v

In this project, we propose a general methodology for managing risk
in military applications involving various risk factors as well as uncer-
tainties in distributions. We build our approach to risk management
applications on the CVaR methodology, which is a relatively new devel-
opment (Rockafellar and Uryasev, 2000, Rockafellar and Uryasev, 2001).
The approach is tested with several stochastic versions of the Weapon-
Target Assignment problem.

The report is organized as follows. Section 2 develops various formula-
tions of the stochastic Weapon-Target Assignment (WTA) problem with
CVaR constraints. Results of numerical experiments for one-stage and
two-stage stochastic WTA problems are presented in Section 3. The
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Conclusions section summarizes the obtained results and outlines the
directions of future research. The Appendix presents key theoretical re-
sults on risk management using Conditional Value-at-Risk (CVaR) risk
measure, and describes the general approach to controlling risk when
distributions of risk factors are uncertain.

2. Stochastic Weapon-Target Assignment
Problem

The Weapon-Target Assignment (WTA) problem considers the opti-
mal assignment of weapons to targets so as to minimize the surviving
value of targets. The WTA problem is used in planning environment
that features a whole spectrum of uncertainties, such as the number and
types of targets in the battle space, their positions, and the probability
of a weapon to destroy a target (e.g. probability of kill). To gener-
ate robust decisions, one must account for these uncertainties and the
corresponding risks. In this section we present two formulations of the
stochastic Weapon-Target Assignment problem that address the uncer-
tainties in a weapon’s probability of kill and in the number of targets.

2.1. Deterministic WTA Problem

The generic formulation of the Weapon Target Assignment problem
is as follows. Given the set of targets and set of available weapons, one
must find the optimal assignment of weapons to targets, such that, for
example, the damage to the targets is maximized, or the cost of the op-
eration is minimized. The WTA formulation that maximizes the damage
to the targets (see, for example, Manne, 1958, denBroeger et al., 1959,
Murphey, 1999) leads to a non-linear programming problem with linear
constraints (NLP), and is the subject of future research. In this study
we adopt another setup, where the total cost of the mission (includ-
ing battle damage or loss) is minimized, while satisfying constraints on
mission accomplishment (i.e., destruction of all targets with some pre-
scribed probabilities). We assume that different weapons have different
costs and efficiencies, and, in general, each may have a “multishot” ca-
pacity so that it may attack more than one target. In the deterministic
setup of the problem we include also the constraint that prescribes how
many targets a single weapon can attack.

The deterministic WTA problem is

K I
min Z Z Cik Tik ! (1a)
k=1i=1
subject to
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K

ink <mg, i=1,..,1, (1b)
k=1
Tik < M Vik, 1= 1,...,I, k= 1,...,K, (].C)
K
Zv'ik < t.i) i=1,..,1, (1d)
k=1

I
1-JJ@ - pin)™* 2 d, k=1,..., K, (1e)
=1

zi € 2%, vy € {0,1},
where

Zi is the number of shots to be fired by weapon i at target k;
vir = 1, if weapon i fires at target k, and vy, = 0 otherwise;

cir is the cost (including the battle loss or damage) of firing one shot
from weapon ¢ at target k; cx includes the relative value of target
k with respect to all other targets;

m; is the shots capatity for weapon i;

t; is the maximal number of targets which can be attacked by weapon
i
pik is the probability of destroying target k by firing one shot from
weapon ;

dy is the minimal required probability for destroying target k;

Z is the set of integer numbers, and Z7 is the set of non-negative
integers.

The objective function in this problem equals to the total cost of the
mission. The first constraint, (1b), states that the munitions capacity
of weapon i cannot be exceeded. The second and the third constraints
(1c) and (1d) are responsible for not allowing weapon ¢ to attack more
than t; targets, where t; < K. The last constraint (le) ensures that after
all weapons are assigned, target k is destroyed with probability not less
than dj.. Note that this non-linear constraint can be linearized:

I
> " In(1 — py) zix — In(1 — di) < 0. (2)
i=1
In this way the deterministic WTA problem (la) can be formulated as
a linear integer programming (IP) problem.
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2.2. One-Stage Stochastic WTA Problem with
CVaR Constraints

In real-life situations many of the parameters in model (1a)—(1e) are
not deterministic, but stochastic values. For example, the probabilities
pi. of destroying target k may depend upon battle situation, weather
conditions, and so on, and consequently, may be treated as being uncer-
tain. Similarly, the cost of firing ¢;;, which includes battle loss/damage,
may also be a stochastic parameter. The number of targets K may be
uncertain as well.

First, we consider a one-stage Stochastic Weapon-Target Assignment
(SWTA) problem, where the uncertainty is introduced into the model
by assuming that probabilities p; are stochastic and dependent on some
random parameter &:

pik = Pir(£)-

In accordance to the described methodology of managing uncertainties
and risks in military applications, we model the stochastic behavior of
probabilities p;x, using scenarios. Namely, probabilities pix (&) take differ-
ent values pix(£s) = Diks, $ = 1,...,.5 under S different scenarios. Such a
scenario set may be constructed, for example, by utilizing the historical
observations of weapons’ efficiency in different environments, or by using
- simulated data, experts’ opinions etc.

To control risks we use Conditional Value-at-Risk (CVaR) approach.
A general risk management approach with CVaR functions is described
in Appendix. We replaced the last constraint in (1a) by a CVaR con-
straint, where the loss function takes a positive value if the probability
of destroying target k is less than dj:

I
Li(z,§) = Zln(l - Pik(f)) zik — In(1 — dg), (3)

and takes a negative value otherwise. The CVaR constraint with confi-
dence level a bounds the (weighted) average of (1 — o) - 100% highest
losses. In our case, allowing small positive values of loss function (3) for
some scenarios implies that for these scenarios target k is destroyed with
probability slightly less than di, which may still be acceptable from a
practical point of view. ‘

Except for the constraint on the target destruction probability, the
one-stage Stochastic WTA problem is identical to its deterministic pre-
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decessor:

K I

min Z Z CikTik (4)
k=1i=1

subject to

K
inksmia i=1,..,1I,
k=1

Tik < mMiVik, 1= 1, ...,I, k= 1, ...,K,

K
Z'Uiksti, 7:=11""I’
=1

CVaR,, [Lk(a:,f)] < Ck, k= 1, ...,K.

Here o is the confidence level, Cy are some (small) constants, and all
other variables and parameters are defined as before. As demonstrated
in (11), for the adopted scenario model with probabilities p;x, the CVaR
constraint for the k-th target '

CVaR, [Li(z, §)] £ Ck
is represented by a set of linear inequalities:

I
> In(1 - pike) i — In(1 — di) — G S wsk,  $=1,.., 5,

i=1

S
Gt (L—op) IS we < G, (5)
s=1

GER, weg>0 s=1,..,8 k=1,.,K

Thus, the one-stage Stochastic WTA problem can be formulated as a
mixed-integer programming (MIP) problem:

K I
min Z Z Cik Tik (6)
k=1 i=1
subject to

K C
Zwik < mi, i=17°'-aI,
k=1

Tk <mivg, t=1.,I, k=1,.,K,

K .
Zvik <t, i=1,..,1,
k=1
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I
> " In(1 — piks) Tk — In(L = di) = Ck < Wek,
d==1

s=1,..,8 k=1,.,K,

S
Gt (1—op) '8 wek <Ck, k=1,.., K,
s=1
Tik € Z+a Vik € {O’ 1}1 Ck € Ra Wsg 2 Oa
s=1,..,8 i=1,.,I, k=1,.. K.

Note that different values of probability p;r represent the uncertainty
in the distributions of stochastic parameters discussed in the previous
section. Indeed, different values of probability p;; imply different prob-
ability measures for the random variable associated with the event of
destroying target k by firing one unit of munitions by weapon i. In ef-
fect, CVaR constraint (4) is a risk constraint that incorporates multiple
probability measures.

2.3. Two-Stage Stochastic WTA Problem with
CVaR constraints

In this section we consider a more complex, but also more realistic
two-stage Stochastic WTA problem, where the uncertain parameter is
the number of targets to be destroyed.

This problem is more realistic since it models the effect of target
discovery as being dynamic; that is, not all targets are known at any
single instance of time. To address this type of uncertainty, we need to
modify our notation.

Consider I weapons are deployed in some bounded region of interest
and interval of time T' with the goal of finding targets and then, once
found, attacking those targets. If we delay all assignments of weapon
shots until to targets until the final time 7', then we have a deterministic,
“static” WTA problem as in (1la)—(1e). If, on the other hand, we assume
that weapons have at least 2 opportunities to shoot during the interval
T, then the WTA problem is dynamic. In the later case we have the
opportunity to avoid expending all our shots at targets discovered early
in T by explicitly modeling the number of undiscovered targets in the
objective function.

Assume that K now represents the number of categories of targets
(the targets may be categorized, for example, by their importance, vul-
nerability, etc).

We will assume the problem has 2 stages. That is, at any given point in
time, we may always partition all targets into those thus far determined
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and those that we conjecture to exist but have not yet found. Our
conjecture may be based on evidence obtained by prior reconnaissance
of the region of interest. At some arbitrary time 0 < 7 < T assume that
there are ny detected targets and 7, undetected targets in each category
k=1,..., K. Thus we have two clearly identified stages in our problem:
in the first stage one has to destroy the targets known at time 7, in the
second stage one must destroy the targets that we conjecture will be
found by time 7. In other words, one needs to make an assignment of
weapons that will allow for the destruction of the targets known at time
7 while reserving enough munition capacity for destroying the targets
we expect to findin T <t <T.

Setup of the two-stage stochastic WTA problem can be considered as a
part of a moving horizon or quasi-multistage stochastic WTA algorithm,
where the WTA problem with many time periods is solved by recursive
application of a two-stage algorithm (Murphey, 1999).

To simplify the problem setup, we remove the constraint on the num-
ber of targets a single weapon can attack (the second and third con-
straints in problems (1a)), since this constraint makes the problem much
too combinatorial. Also, we assume that the probabilities p;; are known
(not random), so that the only stochastic parameters in the two-stage
SWTA problem are the numbers of undetected (second-stage) targets
Nk k= 1, ...,K.

We model the uncertainty in the number of targets at the second stage,
by we introducing a scenario model, where under scenario s € {1, ..., S}
there are nx(s) = ns undetected targets in category k.

The first- and second-stage decision variables are defined as follows:

Z; is the number of munitions to be fired by weapon i at a single
target in category k during the first stage;

yir(s) is the number of munitions to be fired by weapon i at a single
target in category k during the second stage scenario s.

Note that the same decision is made for all targets within a category,
i.e., once weapon i fires, say, 2 missiles at a specific target in category
k, it must fire 2 missiles at every other target in this category.

The recursive formulation of the two-stage stochastic WTA problem
is

K I

min {Z > ncamin + Eq[Q(a, n)]} (72)
k=1 i=1

subject to
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K

anmik <m;, 1= 17“-aI’ (7b)
k=1

I

Zln(l —pik) Tik — ln(l - dk) < €1k, k= ]., ceny K, (70)
i=1 .

K

> ew<C, | (7d)
k=1

Tik, €16 20, i=1,...,I, k=1,..,K,

where the recourse function Q(z,7) is the solution of the problem

K I I
Q(z,7n) = min {Z > me(s) ik vir(s) + MY 5i} (8a)
k=1 i=1 i=1
subject to
K
> (k. + i (8) yir(s)) < ma + i, Vi, (8b)
k=1
§
Zln(l — pir) Yir(s) — In(1 — di) — G < wi(s), Yk, s, (8c)
i=1
5
Gt (1— o) 'S wi(s) S ey Vh, (8d)
« s=1 .
Z(sm +e9x) < C, (8e)
k=1

yik(s)a 61: € Z+) ’U)k(S), Eok 2 0’ gk € Ra M>1.

Let us discuss the recourse problem (7a)—(8e). As before, we minimize
the total cost of the mission. The first constraint (7b) is the munitions
capacity constraint. The second constraint, (7c), allows a first-stage
target in category k to survive with (small) error £3x, and the third
constraint (7d) bounds the sum of errors €1 by some (small) constant
C.

In the recourse function (8a) the first constraint (8b) requires the
weapon i to not exceed its munitions capacity while destroying the first-
and second-stage targets. The possible infeasibility of the munitions
capacity constraint can be relaxed using auxiliary variables 4; that enter
the objective function with cost coefficient M > 1. The second and third
constraints (8c)-(8d) form a CVaR constraint that controls the failure
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of destroying second-stage targets with the prescribed probabilities dy.
Similarly to the deterministic constraint in (7a), CVaR of failure to
destroy a second-stage target in category k is bounded by (small) error
variable €9x. The total sum of errors €15 and ez at both stages is
bounded by small constant C, which makes possible a tradeoff between
the degree of mission accomplishment at the first and second stages.
The extensive form of the two-stage SWTA problem (7a)—(8a) is

K I S K I I
. 1
min {Zznk Cik Tik + 5 SN ks caryin(s) + MZ&} (9)
k=1 1i=1 s=1 k=1 i=1 i=1

subject to

K
Z (ke Tk + s Yik(8)) < my+ 6, Vi, s,
k=1

I
> In(l - pir) zie — In(l — di) S e, Y,
i=1

I
> In(l - pie) vik(s) = In(1 — d) — G S wis, VK, 5,

i=1

5
Gt (1—on) 1871 Y wps <ean, VE,
s=1

K
> (e +ear) < C,
k=1

Tik, Yik(s), 6 € Z¥, wis, e, ek €ERT G ER, M>1L

The two-stage stochastic WTA problem is also a MIP problem. -

3. Numerical results

In this section we present and discuss numerical results obtained for
both one-stage and two-stage stochastic WTA problems. The algorithms
for solving deterministic, one- and two-stage stochastic WTA problems
were implemented in C++, and we used CPLEX 7.0 Callable Library to
solve the corresponding IP and MIP problems. We used simulated data
‘(sets of weapons and targets, the corresponding costs and probabilities
etc.) for testing the implemented algorithms.
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3.1.

Single-stage deterministic and stochastic
WTA problems

For the deterministic and one-stage stochastic WTA problems we used
the following data:

5 targets (K = 5)

5 weapons, each with 4 shots (I =5, m; =4)

any weapon can attack any target (t; = 5),

probabilities p;x and costs ¢;; depend only on the weapon indek i

Pik = Di, Cik = G

glgtz;,rgets have to be destroyed with at least probability 95% (di, =
.95

the confidence levels oy in CVaR constraint are 0.90

there are 20 scenarios (S = 20) for probabilities p;x(s) in the one-
stage SWTA problem; all scenarios are equally probable.

According to the aforementioned, we used simulated data for probabil-
ities psxs and costs ci. It was assumed that probabilities p;xs = pis are
uniformly distributed random variables, and the Fig. 3.1 displays the
relation between the cost of missile of weapon ¢ and its efficiency (i.e.,
probability to destroy a target):

Cost of firing
o
~
]

05 e/' —
0.4 — . . ,
05 0.6 07 08 0.9

Average probability of hitting a target

Figure 1.1. Dependence between the cost and efficiency for different types of weapons
in one-stage SWTA problem (6) deterministic WTA problem (1a).

On this graph, diamonds represent the average probability of destroying
a target by firing one shot from weapon ¢, and the horizontal segments
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represent’ the support for random variable pix(§) = pi(§). The average

probabilities ;
1S
Pix =75 Zpiks
s=1
were used for p;; in the deterministic problem (1a).

The efficiency and cost of weapons 1 to 5 increase with the index
of weapon, i.e., Weapon 1 is the least efficient and cheapest, whereas
Weapon 5 is the most precise, but also most expensive one.
~ Tables 1.1 and 1.2 represent the optimal solutions (variables z;x) of
the deterministic and one-stage stochastic WTA problems.

Table 1.1. Optimal solution of the deterministic WTA problem (1a)

Target T1 T2 T3 T4 T5 Total shots
‘Weapon 1 0 2 1 0 1 4
‘Weapon 2 0 1 2 0 0 3
‘Weapon 3 1 0 0 1 1 3
Weapon 4 1 0 0 1 1 3
‘Weapon 5 0 0 0 0 0 0

Table 1.2. Optimal solution of the one-stage stochastic WTA problem (4), (6)

Target T1 T2 T3 T4 T5 Total shots
‘Weapon 1 0 1 1 0 1 3
‘Weapon 2 0 0 1 1 1 3
‘Weapon 3 2 0 0 1 0 3
‘Weapon 4 0 1 1 0 1 3
Weapon 5 1 1 0 1 0 3

One can observe the difference in the solutions produced by determin-
istic and stochastic WTA problems: the deterministic solution does not
use the most expensive and most precise Weapon 5, whereas the stochas-
tic solution of problem (6) with CVaR constraint uses this weapon. It
means that the CVaR-constrained solution of problem (6) represents a
more expensive but safer decision.

On a different dataset, we obtained a similar result: the optimal so-
lution of the stochastic problem with CVaR constraints did not use the
cheapest and the most unreliable weapon, whereas the deterministic so-
lution used it.
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We have also performed testing of the deterministic solution under
different scenarios. The deterministic solution failed to destroy more
than one target under 13 of 20 scenarios. v

This example highlights the importance of using risk management pro-
cedures in military decision-making applications involving uncertainties.

3.2. Two-Stage Stochastic WTA Problem

For the two-stage stochastic WTA problems we used the following
data:

» 3 categories of targets (K = 3)
m 4 weapons, each with 15 shots (I =4, m; = 15)

» probabilities p;x and costs c;x depend only on the weapon index i:
Dik = Pi, Cik =Ci
» all targets have to be déstroyed with probability 95% (dy = 0.95)

» the confidence levels o in CVaR constraint are equal 0.90

m there are 15 scenarios (S = 15) for the number of undetected tar-
gets mgs (for each k, the number of undetected targets nys is a
random integer between 0 and 5); all scenarios are equally proba-
ble.

Cost of firing

0.55 0.6 0.65 0.7 0.75 0.8 0.85
Probability to destroy target

Figure 1.2. Dependence between the cost and efficiency for different types of weapons
in two-stage SWTA problem (9).

For the probabilities p; in the two-stage problem, we used the first
four average probabilities from the deterministic WTA problem, and
the efficiency-cost dependence is shown in Fig. 3.2.
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Tables 1.3 to 1.5 illustrate the optimal solution of the problem (9).
Table 1.3 contains the first-stage decision variables z;;, and Tables 1.4
and 1.5 display the second-stage variables y;x(s) for scenarios s = 1 and
s = 2, just for illustrative purposes.

Similarly to the analysis of the one-stage stochastic WTA problem, we
compared the scenario-based solution of problem (9) with the solution
of the “deterministic two-stage” problem, where the number of second-
stage targets in each category is taken as the average over 15 scenarios.
The comparison shows that the solution based on the expected infor-
mation leads to significant munitions shortages in 5 of 15 (i.e., 33%)
scenarios, and consequently to failing the mission at the second stage.
Recall from the analysis of the one-stage SWTA problem that the solu-
tion based on the expected information also exhibited poor robustness
with respect to different scenarios. Indeed, solutions that use only the
expected information, are supposed to perform well on average, or in
the long run. However, in military applications there is no long run, and
therefore such solutions may not be robust with respect to many possible
scenartos.

Table 1.5. First-stage optimal solution of the two-stage stochastic WTA problem

Category K1 K2 K3
# of detected targets 3 5 2
‘Weapon 1 0 0 0
‘Weapon 2 0 0 0
Weapon 3 1 1 1
Weapon 4 1 1 1

Table 1.4. First-stage optimal solution of the two-stage stochastic WTA problem 9)
for the first scenario

Category K1 K2 K3
# of undetected targets 1 4 2
‘Weapon 1 0 0 2
Weapon 2 0 0 1
Weapon 3 1 1 0
1 1 0

Weapon 4
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Table 1.5. Second-stage optimal solution of the two-stage stochastic WTA problem
(9) for the second scenario

Category K1 K2 K3

# undetected of targets 3 5 3
Weapon 1 2 0 2
Weapon 2 1 0 1
Weapon 3 0 1 0
Weapon 4 0 1 0

Thus, solutions of both one-stage and two-stage SWTA problems con-
firm the general conjecture on the potential importance of exploiting
stochastic models and risk management in military applications.

4. Conclusions

We have presented an approach to managing risk in stochastic en-
vironments, where distributions of stochastic parameters are uncertain.
This approach is based on the methodology of risk management with
Conditional Value-at-Risk risk measure developed by Rockafellar and
Uryasev, 2000, 2001. Although the presented approach has been used
to solve one-stage and two-stage stochastic Weapon-Target Assignment
problems, it is quite general and can be applied to wide class of problems
with risks and uncertainties in distributions. Among the directions of
future research we emphasize consideration of a stochastic WTA prob-
lem in NLP formulation, where the damage to the targets is maximized
while constraining the risk of false target attack.
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5. Appendix. The General Approach to Risk
Management

Presence of uncertainty in a decision-making model leads to the prob-
lem of estimation and managing/controlling of risk associated with the
stochastic parameters in the model. Over the recent years, risk manage-
ment has evolved into a sophisticated discipline combining both rigorous
and elegant theoretical results and practical effectiveness (this especially
applies to the risk management in finance industry). Generally speaking,
risk management is a set of activities aimed at reducing or preventing
high losses incurred from an incorrect decision. The losses (e.g., dam-
ages, failures) in a system are quantified by a loss function L(z,§) that
depends upon decision vector x and a stochastic vector £ standing for
uncertainties in the model. Assuming for now that a distribution of the
parameter ¢ is known, it is possible to determine the distribution of the
loss function L(zx,£) (see Fig. 1.3). Then, the problem of preventing
high losses is a problem of controlling and shaping the loss distribution
and, more specifically, its right tail, where the high losses reside. To
estimate and quantify the losses in the tail of the loss distribution, a risk
measure has to be specified. In particular, a risk measure introduces the
ordering relationships for risks, so that one is able to discriminate “less
risky” decisions from the “more risky” ones!. The appropriate choice of
a risk measure is, in most cases, dictated by the nature of uncertainties
and risks in the problem at hand. In military applications, for example,
one usually deals with the probabilities of events, such as the proba-
bility to hit a target, the probability to detect the enemy’s aircraft,

1Artzner et al.,, 1999, have introduced a concept of “ideal”, or coherent, risk measure. A
coherent risk measure, which satisfies to a set of axioms developed in this paper, is expected
to produce “proper” and “consistent” estimates of risk.
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and so on. Therefore percentile risk measures that represent the risk
in terms of percentiles of the loss distribution are particularly suitable
for the risk management in military applications. Popular percentile risk
measures include Value-at-Risk (VaR), Conditional Value-at-Risk, Max-
imum Loss, and Expected Shortfall. Figure 1.3 displays some of these
measures; Value-at-Risk with confidence level o (a-VaR), which is the
a-percentile of loss distribution, Maximum Loss (“1.0-percentile” of loss
distribution), and a-CVaR, which may be thought of as the expectation
of losses exceeding a-VaR.

>
13
e
(]
3
5 4 i Maximum
= VaR (o-percentile) loss
Probability
-+ | l-a
Lﬂ CVaR
Lt !
System loss

Figure 1.8. Loss function distribution and different risk measures.

We build our approach to risk management in military applications
on the CVaR methodology, which is a relatively new development (
Rockafellar and Uryasev, 2000, Rockafellar and Uryasev, 2001). This
section presents the general framework of risk management using Con-
ditional Value-at-Risk, and extends it to the case when the distributions
of stochastic parameters are not certain.

5.1. Risk Management Using Conditional
Value-at-Risk

Consider a loss function L(z, ) depending on a decision vector z and
a stochastic vector ¢, and its cumulative distribution function (c.d.f.)

¥(z, )
¥(z,¢) = PIL(,8) < ¢
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Then the a-VaR (Value-at-Risk at confidence level @) function (4 ()
corresponding to loss L(z,§) is

Ca(z) = gégl{w(x, ¢) > o}

An “intuitive” definition of Conditional Value-at-Risk with confidence
level oo (a-CVaR) presents it as conditional expectation of losses ex-
ceeding the o-VaR level. This definition is correct, however, only for
continuously distributed loss functions. For loss functions with gen-.
eral non-continuous distributions the a-CVaR function ¢4 (z) is defined
as the expected value of random variable z, (Rockafellar and Uryasev,
2001):
ba(z) = CVaRy[L(x, £)] = E[2a],

where c.d.f. ¥, (z,() of z, has the form

_[o, ¢ < Ga(a),
‘I’za(xao - { [‘I’(.’L‘,C) — a]/[l — CY], C > Ca(x)'

In (Rockafellar and Uryasev, 2001), it was shown that a-CVaR can be
expressed as a convex combination of a-VaR and conditional expectation
of losses strictly exceeding a-VaR:

$a(T) = Aa(2) (a(@) + [1 = Aa(2)] 65 (), (10)
where ‘ _
¢z (z) = E[L(z,€) | L(=,£) > Cal@)); (11)
which is also known as “upper CVaR” or Expected Shortfall, and

Aa(z) = [U(z,(a(z)) —0]/[1 — 0], 0< Aa(z) <1

Similar to (11), another percentile risk measure, called “lower CVaR”,
or CVaR™, can be defined:

¢a (z) = E[L(z,€) | L(=,£) Z (a(2)]-

Then, as it was shown in (Rockafellar and Uryasev, 2001), the introduced
risk functions satisfy the following inequality:

(a(2) £ ¢5(2) < ¢alz) < 05 (2).

The conditional Value-at-Risk function ¢o(z) has the following prop-
erties (Rockafellar and Uryasev, 2000, Rockafellar and Uryasev, 2001,
Acerbi and Tasche, 2001):
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m CVaR is continuous with respect to confidence level o (VaR,
CVaR't, CVaR™~ may be discontinuous in a);

‘m CVaR is convex in a and z, provided that the loss function L(z, §)
is convex in z (VaR, CVaR™, CVaR™ are generally non-convex in

z);
» CVaR is coherent in the sense of Artzner et al., 1999;

= unlike VaR, CVaR has stable statistical estimates;

» in the case of a continuous loss distribution CVaR coincides with
CVaR* and CVaR ™, and represents the conditional expectation of
losses exceeding VaR.

From the viewpoint of managing and controlling of risk, the most impor-
tant property of CVaR, which distinguishes it from all other percentile
risk measures, is the convexity with respect to decision variables, which
permits the use of convex programming for minimizing CVaR. If the loss
function L(z, £) can be approximated by a piecewise linear function, the '
procedure of controlling or optimization of CVaR is reduced to solving
Linear Programming (LP) problem.

The techniques for optimizing CVaR when the loss distribution is
discrete are of special importance for military applications, as will be
demonstrated in Section 3.

Assume that there are S possible realizations (scenarios) &1, ...,€s of
vector £ with probabilities mg (Zf;l ms = 1), then in the optimization
problem with multiple CVaR constraints

max g(z)

subject to
cVaRan[L(x, é‘)] S Cn, n= 1, seny N,

where g(x) is some performance function and X is a convex set, each
CVaR constraint may be replaced by a set of inequalities

L(z,&) — (o < wns, $=1,..,5,

S
Cn + (1 - an)—l Z"rs’wns < Ch, (12)

s=1

Cn, € R, Wns € R+, 8§ = 1, ...,S,

where R is the set of real numbers, and Rt is the set of non-negative
real numbers, and wp, are auxiliary variables. If in the optimal solution
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the n-th CVaR constraint is active, then the corresponding variable ¢,
is equal to an-VaR (i.e., a,-th percentile of the loss distribution).

We also note that in the case when the behavior of stochastic param-
eter & can be represented by a scenario model {{, s = 1,...,S} with
equally probable scenarios (s = 1/S), the concept of CVaR acquires
especially simple and transparent interpretation. Namely, if (for a fixed
) the scenarios &1, ..., £s are indexed such that L(z,£1) < ... < L(z,&s),
then a-CVaR equals the weighted average of losses for the [(1 — a)S]
worst scenarios:

S
bal2) = Tayg |(Ba = @S L bo) + D L@t

s=8q+1
where number s, is such that
S—sa<(1l—-a)§<8—-s5s+1.

In the risk management methodology discussed above the distribution
of stochastic parameter £ is considered to be known. The next subsection
extends the presented approach to the case, when the distribution of
stochastic parameters in the model is not certain.

5.2. Risk Management Using CVaR in the
Presence of Uncertainties in Distributions

The general approach to managing risks in an uncertain environment,
where the distributions of stochastic parameters are not known for sure,
can be described as follows. Suppose that we have some performance
function F(z,£), dependent on the decision vector z € X and some
random vector £ € E, whose distribution is not known for certain. We
assume that the actual realization of vector £ may come from different
distributions ©41,...,©y. The vector ¢ stands for the uncertainties in
data that make it impossible to evaluate the efficiency F(z,&) of the
decision for sure. Thus, there always exists a possibility of making an
incorrect decision, and, consequently, suffering loss, damage, or failing
the mission. If the loss in the system is evaluated by function L(z,£),
then risk of high losses can be controlled using CVaR constrains. Let
formulate the problem of maximizing the expected performance function
F(z, &) subject to some operational constraints Az < b and CVaR risk
constraints. Due to the unknown distribution of vector £, we are unable
to find the expectation Eg|F(z, £)]. Therefore, being on the conservative
side, we want the decision z to be optimal with respect to each measure
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©,,, and this leads to the following mazi-min problem:
mex  min _ Ee, [F(z,8)] (13)
subject to
Az <b,
CVaRa[L(m,€)|®n] S C, n = 1, aeny N,

where multiple CVaR constraints with respect to different measures ©y,
control the risk for high losses L(z,£) to exceed some threshold C. In
formulation (13) we assume that the performance function F' is concave
in z, and the loss function L is convex in x. These assumptions are
not restrictive; on the contrary, they indicate that given more than one
decision with equal performance one favors safer decisions over the riskier
ones.

Model (13) explains how to handle the risk of generating an incorrect
decision in an uncertain environment. In military applications, different
types of risks and losses may be explicitly involved, for example, along
with loss function L(z,£) one may consider a loss function R(z,&) for
the risk of false target attack. Control for this type of risk can also be
included in the model by a similar set of CVaR constraints:

max o min  Eey[F(z¢)]
subject to

Az < b,

CVaRy, [L(z,€)|©n] £ C1, n=1,..,N,
CVaR,,[R(z,€)|On] < C3y n=1,..,N.

In the next sectioné we test the presented approach to risk management
in military applications on the Weapon-Target Assignment problem.
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Part 3: Properties of No-Depot Min-
Max 2-Traveling-Salesmen Problem
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1. Introduction

Let G(V, E) be an undirected graph with set of vertexes V = {1,2,...,n}
and set of edges E. Let d(4, j) denote the length of edge (¢, j). We assume that
graph G(V, E) is complete, i.e. any two vertexes are connected by an edge. A
path on graph G(V, E) is defined as an ordered subset of set V. The length of
path P = {p1,...,p,} is defined by the following formula:

r—1
L(P) = d(pi, pi+1) n
i=1
A path that returns to the origin is a cycle. A cycle that visits each vertex of
graph G(V, E) once is a tour on graph G(V, E). Atour (t; — 3 — ... —
t, — t1) is defined (and denoted) by an ordered set T' = {t1,t2,...,t}. The
length of tour 7" is computed by the following formula:

r—1
L(T) = d(ti,ti1) + d(tr, t1) @
i=1 .
A cyclic rotation of vertexes in a tour does not change the length of the
tour. A regular Traveling Salesman Problem (TSP) consists in finding the
shortest tour on graph G(V, E):

Lrsp(N) = T:T(I:T‘I}’IHTl:nL(T) 3

Multi-Traveling Salesmen Problem is an extension of TSP to the case
of several salesmen. The objective of the Multi-Traveling Salesmen Problem
with m salesmen (m-TSP) is to find a decomposition of graph G(V, E) into m
disjoint complete subgraphs minimizing an aggregated objective resulted from
the particular solutions of TSPs on the subgraphs. Min-Sum m-T'SP with a
depot vertez is a prevalent formulation of m-TSP. According to this formula-
tion, the objective is to determine m tours of the least total length, so that the
depot vertex is present in every tour, and every other vertex of graph G(V, E)
is present in only one tour. This variation of m-TSP can be transformed into
a regular TSP by introduction of artificial vertexes [1]. Unfortunately, the re-
sultant TSP becomes very degenerate in most cases. The transformation of
Min-Sum m-TSP with different depot vertexes appears to be difficult except
for a special case of only two salesmen. The transformation for m = 2 is
provided in [5]. ,

A typical solution of Min-Sum m-TSP is highly irregular. The computa-
tional experience shows that the distribution of assignments is not uniform in
the optimal solution: the difference in the length of two tours can be excessive.
In many contexts this can be inappropriate: Giust [4] considers an example
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of gas distribution by a small company that has four delivery cars. In another
example, France et al. [2] describe a problem of scheduling n jobs to m iden-
tical machines in order to minimize the total time when processing times are
job-sequence dependent. The authors consider the Min-Max m-TSP formu-
lation with a depot vertex. In this formulation the objective is to determine
m tours with the least length of the longest tour; every tour starts and ends at
the depot vertex, and every vertex of graph G(V, E) (except the depot vertex)
is present in only one tour. The authors propose one heuristic and two exact
search schemes for the Min-Max m-TSP with depot formulation.

We consider Min-Sum m-T'S P without a depot vertex (No-Depot Min-
Max m-TSP). In this case, the Submarine Routing Problem can be considered
as a possible application of this formulation. In this problem graph G(V,E)
represents a region that needs to be monitored. Each vertex of the graph cor-
responds to a specific geographical location in the region. There is a fleet of
submarines available for monitoring. Due to the high price of a submarine, the
fleet is very limited, and usually contains 2-3 submarines. A patrol cycle of a
submarine is the time needed to visit all the assigned locations and to return
to the origin. The objective of the Submarines Routing Problem is to assign a
specific route (tour) to each submarine, so that each location is visited once by
only one submarine, and the longest patrol cycle is minimized. The problem
can be formulated as follows:

LyMIN-Max = Mlmir}w ie{I{laXm}{LTSP(Mi)} (4)
V=MU...UMpy, )
M;AM;=0Vi#j )

In this formulation of Min-Max m-TSP a depot vertex is not specified. The
submarines are assigned to their patrol routes for many cycles for a period of
time ranging from 1 to 5 years. Provision and crew changes are provided in
several locations on the patrol routes by special ships or aircrafts. Usually,
these locations are chosen after the submarines’ routes are specified.

The purpose of this study is to study No-Depot Min-Max 2-TSP. We in-
troduce a notion of characteristic function for this class of problems. Using
constant graphs we study a connection between No-Depot Min-Max 2-TSP
and a subclass of self-dual monotonic Boolean functions.

2. Characteristic Function for No-Depot
Min-Max 2-TSP

We consider Min-Max No-Depot 2-TSP on complete undirected graph
G(V, E) with non-negative lengthes of edges. We consider a two-stage so-
lution of the problem. At the first stage, the partition of set V' = {1,...,n}
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into two subsets M; and M is created. The first set M is assigned to the first
salesman, and the second set M, is assigned to the second salesman. At the
second stage each salesman solves a regular TSP on the subgraph assigned to
him. We associate each graph partitioning {M, M2} with a Boolean vector
a={ai,...,an} € {0,1}" in the following way:

{0 ifi e M,
o; =

1 ifie Ms @

Further we will identify each decomposition { M1, Mz} of graph G(V, E) by
Boolean vector & = {a1,...,on} according to rule (7). ‘

Definition 2.1. Characteristic ﬁmétion f(z1,...,%n) for No-Depot Min-Max
2-TSP on graph G(V, E) (or simply a characteristic function for graph G(V, E))
is defined by the following rule:

o 1, Lrsp(Mi) > Lrsp(Mp)

={ 8
(@) { 0, Lrsp(Ms) < Lrsp(Mz), ®
where & is defined in (7).

Boolean vector & = (ay,...,qy) is called one if f(@) = 1. One & =
(a1, ..., ) is called a lower one if there is no other one 8 = (B1y---,0n)
so that B; < a; Vi = 1,...,n. Otherwise one @ = (oz,...,ay) is called
a generated one. Similarly, Boolean vector & = (@i, ...,0n) is called zero
if f(@) = 0. Zero & = (ou,...,qn) is called an upper zero if there is no
other zero 8 = (B1,...,Bn) so that §; > a; fori = 1,...,n. Otherwise zero
a@ = (oa,...,ay) is called a generated zero.

A graph is called metric if all the vertexes in the graph correspond to the
points in metric space, and the lengths of the edges equal the metric distances
between the corresponding points. By the definition, any metric graph is a
symmetric graph, and for any three graph vertexes 41, 42, and i3 the triangle
inequality d(31,43) < d(i1,2) + d(%1, i2) is satisfied.

Definition 2.2. Graph G(V, E) is splittable if for any three vertexes the trian-
gle inequality is satisfied, and for its characteristic function there is no decom-
position { My, My} of the graph , for which Lrsp(M1) = Lrsp(M2).

(Note, in this definition it is not necessary that the considered graph is met-
ric)

Statement 2.1. The characteristic function of a metric (splittable) graph is
monotonic.

Indeeci, since the triangle inequality holds for any three vertexes of a metric
(splittable) graph, adding a new vertex to M; does not decrease Lrsp(M),
and removing a vertex from M does not increase Lrsp(M3).
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A Boolean function f(&) is self-dual if for any Boolean vector At = (715 -y Tn)
and vector v~ = (1 — ¥1,.., 1 — n)

fOM) +5(7) =1
The next property follows directly from definitions 2.1 and 2.2:
Statement 2.2. The characteristic function of a splittable graph is self-dual.
Consider a non-splittable metric graph. For this graph, the equality

Lrsp(M;) = Lrsp(M2)

holds for at least one decomposition {M, My} of graph G(V, E). The same
equation holds for opposite decomposition {Mz, M }:

Lrsp(M3) = Lysp(My).

Therefore, the values of the characteristic function are equal on the vectors
corresponding to decompositions {M, Mz} and { M2, M1 }. Hence, the char-
acteristic function of the not-splittable metric graph is not self-dual. This situ-
ation can be easily avoided by small variation of distances in the graph.

Theorem 2.1. If No-Depot Min-Max 2-TSP is considered for a metric ( split-
table) graph G(V, E), at least one optimal solution of this problem belongs
to the set of lower ones of the corresponding characteristic function. There is
another optimal solution that belongs to the set of upper zeros.

Proof. Suppose, that the characteristic function has neither upper zero, nor
lower one, that corresponds to an optimal solution of No-Depot Min-Max 2-
TSP (4)-(6). Therefore, every optimal solution of the problem corresponds
either to generated zero, or to generated one. Because of the symmetry of the
problem, the solution formed by the opposite decomposition is also optimal. If
the original solution corresponds to a zero (one) of the characteristic function,
the opposite solut_ipn corresponds to a one (zero) of this function. Consider
optimal solution a® = (o, ..., al) that corresponds to a zero of characteristic
function f(&):

of = { 0 ifie M

tT 11 ifieMy ’

My UM, =V,M; N M = {.

According to the assumption, a0 is a generated zero. Therefore, there exists an

upper zero o* that exceeds a? in several components. So, there is a non empty
set of vertexes H, H C M, so that:

{0 ifieMUH
i=\1 ifieMp\H °
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According to Definition 2.1 for zeros o* and o0 the following inequalities are

satisfied:
Lrsp(M;) < Lrgp(Mz), &)

Lrsp(M1 UH) < Lrsp(M2 \ H). (10)

Since, the graph is metric (splittable), according to Statement 2.1 the following
conditions are valid:

Lrsp(My) < Lrsp(Mi U H), 11)
Lrsp(M2\ H) < Lrsp(Mz). 12)

Hence, we immediately obtain:

min{Lysp(M1 U H), Lrsp(M2 \ H)} < min{Lrsp(M1), LTsp(M2)}.
(13)
Since, by the proposition, the value of expression

min{Lrsp(M1), Lrsp(M2)}
is minimal for all bi-partitions of set V, the following equality is satisfied:

min{Lrsp(M; U H), Lrsp(M2 \ H)} (14)
= min{Lrsp(M), Lrsp(M2)}.

Therefore, for characteristic function f(&) there exists upper zero &@* corre- -
sponding to an optimal solution of No-Depot Min-Max 2-TSP problem (4)-(6).
Opposite vector @** = 1 — &@* is a lower one of the characteristic function; this

vector corresponds to another optimal solution of the problem.
O

According to Theorem 2.1 each No-Depot Min-Max 2-TSP problem has a
corresponding self-dual monotonic Boolean function. In the following sections
we consider the reverse question:

What Boolean function has a corresponding No-Depot Min-Max 2-TSF, for
which this function is characteristic? ‘

Below we demonstrate that for every threshold self-dual monotonic func-
tion it is possible to find a No-Depot Min-Max 2-TSP, for which the consid-
ered function is characteristic. For the case discussed in the next sections the
developed graph is splittable.

3. Threshold Characteristic Function

In this section we consider Boolean functions defined on set {—1,1}". This
definition of Boolean function is different from the standard one when the func-
tion is defined on {0, 1}". We use this format to emphasize specific properties
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of the considered problem. Moreover, all the necessary properties of standard
Boolean function remain valid for this class of functions. We identify every
Boolean vector 3 = (Bi,- .., Bn) by vector || B1,...,Bn || inlinear space L,.

A set of vectors on which f (E) = 0 is called a set of zeros of function
F(B), and is denoted by f~1(0). Set of ones f~*(1) is defined similarly.
Boolean function is called threshold [6], if there exists a set of real numbers
Z1,T3, ..., In,C, SO that linear inequality

z1B1+z2f2+ ...+ TP <c

holds for Boolean vector § = (B, -, Bs) iff £(B) = 0. Thus, for threshold
Boolean function f(J) sets f~(0) and f~1(1) are separated by hyperplane

101 +Z2f2+ ...+ TP =

which is called a threshold hyperplane for threshold Boolean function f (B).
A hyperplane is called a central hyperplane if the coordinate origin belongs to

this hyperplane.
The following statement makes a connection between self-dual threshold
Boolean functions and central hyperplanes.

Statement 3.1. Threshold Boolean function f (ﬁ) is self-dual if and only if
there exists a central threshold hyperplane for this function.

Indeed, presence of a central threshold hyperplane implies self-duality of
£(B). Suppose now that threshold hyperplane x181 +z202+. . . +Znbpn = cof
self-dual Boolean function f (,5) is not passing through the coordinate origin.
Because of the self-duality, sets f~1(0) and f~(1) are symmetric to each
other. Consequently, hyperplane z18; + 2f2 + ... + Tnfn = —c, which is
symmetric to the original threshold hyperplane, is also a threshold hyperplane.
Since the considered hyperplanes are threshold at the same time, the following
conditions are valid:

if £(B) = 1 then 181 + @22 + .. + Tnbn 2
if f(B) = 0 then 2181 + z2f2 + ... + Tnfn < —c.
Consequently, central hyperplane
7161+ 2B+ ...+ T =0

is a threshold hyperplane for Boolean function f (ﬁ) Therefore, we obtained a
central threshold hyperplane that divides linear space Ly, into two areas A =
{B: z181+x2fa+. . .+ TnPn < 0} and Ay = {B: z11+@2B2+. . +Tnfn >
0}.
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Hence, the next statement follows directly:
Statement 3.2. f~1(0) C Ap and f~(1) C A1

Indeed, because of self-duality, neither zero, nor one of Boolean function
f (ﬁ) belongs to the central threshold hyperplane. Therefore, all zeros of
Boolean function f (,ﬁ) belong to area Ay, whereas all ones of the function
belong to area A;.

4

Definition 3.1. Zero (B, ...,0Bi-1,—1, Bit+1, - -, Bn) of monotonic Boolean
function f(ﬁ) is the i*® frontier zero, if (B1,..-,Bi-1,+1,Bit1,-.-,Pn) is
a one of function f(ﬁ) One (B, ..., Bi—1,+1,Bit1,- .., Bn) of monotonic
Boolean function f (ﬁ) is the i*® frontier one, if (B, - - -, Bi-1, —1, Bit1, - -, Bn)
is a zero of function f (ﬁ)

The next statement follows immediately:

Statement 3.3. For a monotonic self-dual Boolean function there exists at least
one frontier zero, and at least one frontier one.

Definition 3.2. Function f (ﬁ) is essentially independent of the i*® variable, if
forany 181, RN :Bi—la IB’H-la <o ,,Bn € {—'L +1}

f(lgl, .- -7:81'—17 "‘1);8'i+17 e ’,Bn) = f(ﬁla o 1:8i—1a +17ﬁ’i+11 .- 'aﬂn)as
(15)

otherwise, function f (ﬁ) is essentially dependent on the i** variable,
Statement 3.4. Monotonic Boolean function f (ﬁ) is essentially dependent on

the ith variable if and only if this function has the i*® frontier zero and the i*"
[rontier one.

This statement immediately follows from Definitions 3.1 and 3.2.

Theorem 3.1. For any threshold self-dual Boolean function f (E), essentially
dependent on all its variables and defined by threshold hyperplane 151 +

Z9f2 + ... + Tnfn = cany nontrivial vector || a1, ...,an |, 61,...,8, =2 0
belongs to area A; = {f : 161 + z202 + ...+ x,08, > 0}, whereas the
opposite vector || —ay, ..., —ay || belongs to area Ag = {B : 181 + z202 +
oot Tpfn <0}

Proof. At first, we show the validity of the theorem for vector || 1,0,...,0 |.
Denote R = {#: 181 + 2262 + ... + Znfn = 0}. According to Statement
3.1, R s a central threshold hyperplane for Boolean function f (ﬁ).

Suppose that vector || 1,0,...,0 || does not belong to A;. Therefore,

11,0,...,0l€ ApUR.
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If || 1,0,...,0 ||€ R then z; = 0, and hyperplane zofe+ ...+ Tafn =0

isa threshold hyperplane of function f (,3 ). Hence, function f (,B) does not de-
pend on variable 3;, that contradicts the condition of the essential dependency.

Therefore
” 1,0,...,0 ”E Ap.

Since function f(J) is essentially dependent on all its variables, due to
Statement 3.4, this function has the 1-st frontier zero || —1, B2, ..., 5n ||€ Ao.
Since Ay is a conical set, and || 1,0,...,0 || and || =1, B2, ..., Bn || belong
to that set,
(I11,0,...,0 | +2 ]| =1,B2,...,Bn ||) € Ao.

By Definition 3.1,
1,82, 6n |I=]l L0,...,0 | +21 =1,82,...,8xn |l
is a frontier one, and, consequently, beldngs to set A;. Therefore,
AU Ag # 0.
"\I‘hus, we obtain a contradiction of what we have assumed. Therefore,
| 1,0,...,0 |€ A;.
Similarly, the statement can be proved for any other unit vector
lo,...,0,1,0,...,0 .

Since A; is a conical set, any nontrivial linear conical combination (combina-
tion with non-negative coefficients) of its elements belongs to this set. There-

fore, for any nontrivial combination of nonnegative numbers a1, . . ., an,
| —a1,...,—an [|€ Ao
and
) | a1y...,an |le A;.

The following statement is an immediate inference of the theorem:

Statement 3.5. If threshold self-dual Boolean function f (ﬁ) is essentially de-
pendent on all its variables, and x, B1+zafo+...+Tpnfn =cis the threshold
hyperplane of the function f (ﬂ) then t; > 0foranyi=1,.

Indeed, according to Theorem 3.1, the vectors of form || 0,...,0,1,0,...,0 ||
satisfy inequality 161 + 2202 + . .. + znfn > 0, that proves the statement.
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4. Constant Graphs

Definition 4.1. Symmetric graph G(V, E) is a constant graph if there exists a
set of numbers B = {b;}.=%, so that for every pair of vertexes i and j of graph

G(V, E), the length of a connecting edge is d(i, j) = b; +b;. Set B = {b:}i=%
is a defining set for constant graph G(V, E).

The TSP considered on a constant graph belongs to the class of Constant
Discrete Programming Problems, which are studied, for example, in [3].

Statement 4.1. For constant symmetric graph G(V, E) the length of a cycle
does not depend on the order of the visits to the vertexes of the cycle.

Indeed, the length of cycle ¢ = (j1 — j2 — ... — jx — Jj1) is determined
by

k-1
L(c) = Y d(i jisr) + d(ik, 1) (16)
i=1
k-1 k-1
= 3 (b +bj) FhiEH b =2 b =2 b, (D
i=1 i=1 ji€e

Moreover, it can be proved that if for a complete graph the length of a cycle
does not depend on the order of the visits to the vertexes of the cycle, the graph
is constant [3]. As a direct consequence of Statement 4.1, TSP is a trivial
problem for a constant graph. Indeed, every tour in that graph has the same
length.

Statement 4.2. For constant graph G(V, E) with non-negative elements of
defining set B = {b;}!=%, the triangle inequality holds for all triplets of ver-
texes of that graph.

Indeed,

= (b; + bg) + 2b; = d(i, k) +2b; > d(i, k)

5. Interpretation of Threshold Self-Dual
Monotonic Boolean Functions

Consider symmetric constant graph G(V, E)) with nonnegative elements in
its defining set B = {b;}{=}. As it has been shown in the previous section, the
triangle inequality holds for any triplet of the graph vertexes, and the length of
a cycle does not depend on the order of the visits to the vertexes.

Assuming that graph G(V, E) is splittable, consider No-Depot Min-Max
2-TSP assigned to this graph. The characteristic function of constant graph
G(V, E) is defined by the following rule:
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if2) e bi >2Z,€M ‘
(8 ) { oltherw1se ’ ! (18)
where
_J 0 ifie
ﬂ’_{l ifie My’ (19)

MiUM; =V, MlﬂMé_Q
Using the vector notations introduced above and an assumption that graph

G(V, E) is splittable, the definition of function f (B) can be rewritten in the
following way:

= 1 iffTE>0 '
f(ﬂ)~{ 0 ifFTE<0 (20)

where
B= ”Bla see 7:311”’ = ”xla oo 1xn”'

Since characteristic function f (ﬁ) is monotonic, the determination of all its
lower ones is sufficient to completely describe the function. Let F} denote the
set of lower ones, and Fp denote the set of upper zeros of function f (,8) Due to
the self-duality of function f (ﬁ) the following statement is valid for splittable
graph G(V, E):

Statement 5.1. ﬁ e & —E € F,, that is, the vector opposite to a lower
one is an upper zero, and vice versa.

Definition 5.1. A fundamental matrix of ones of monotonic Boolean function
F(B) is matrix D1, constructed by the following rules: the first n rows form
an identity matrix n X n; the next rows are formed by all the vectors from
Fy arranged in binary increasing order. A fundamental matrix of zeros of
monotonic Boolean function f (ﬂ) is matrix Dg, constructed by the following
rules: the first n rows form a negative identity matrix n. X n; the next rows are
formed by all the vectors from Fy arranged in binary decreasing order.

Due to self-duality of function f(&), D1 = —Do.
Statement 5.2. Any one (3 of monotonic Boolean function f (ﬁ) can be rep-

resented as B, = 161, . . -, bm|| X D1; any zero Bo of monotonic Boolean func-
tion f(f3) can be represented as fp = ||b1,...,bm|| X Do, where b; € {0,2},
i=1,...,n,andb; € {0,1}, i = n+1,...,m, and m is the number of rows

in fundamental matrix Dy (Dy).

Indeed, one [y of function f(f) is generated by some lower one 5{ Sup-
pose that 37 is represented by the kt row of fundamental matrix D;. Then

Br=1b1,--1bn,0,...,0,b = 1,0,...,0] x D1, @1
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where

pood 2 i (3, differs from G* in the i*h component 22)
: 0 if B, conicides with G in the i*" component

Similarly, it can be shown for zero fo of function f B).
For the rest of the section, notation D x £ > 0 ( D x © < 0) means that
resultant vector ¥ = D x Z has only positive (negative) components.

Theorem 5.1. Self-dual monotonic Boolean function f (,5) essentially depen-
“dent on all its variables is an threshold if and only if there exists a vector Z,
for which Dy x Z > 0, where D1 is a fundamental matrix of ones of function

F(B)-

Proof. Existence: Due to Statement 3.1 self-dual threshold function f (B) has
central threshold hyperplane (3, &) = 0, and for any one (; of function f (ﬁ)

(8, %) > 0.

According to Statement 3.5, all components of vector Z are positive. Since the
rows of matrix D; are either rows of the unit matrix, or lower ones of function
f(B), the following inequality is satisfied:

Dy x%>0.

Self-Duality: Suppose that there exists vector &, so that D1 X & > 0. Con-
sider any one 3 of function f(5). Due to Statement 5.2, 81 = ||b1, ..., bml| X

Dy, where b; € {0,2},i = 1,...,n,and b; € {0,1}, i =n+1,...,m.
Denote 7= D; x &. Since v; > 0 and b; > Oforany 7 = 1,...,m, and there
exist ¢*, for which b;« > 0, then
(B1,%) = % D1,8) = (5,(D1 x H)T) 2
> by X minw; > 0.
1
Hence, for one ,3_1 of function f (5)
(81,%) > 0.
Since function f (E) is self-dual, for any zero ﬁ_a of function f (E)

(B, %) < 0.

Therefore, function f(f) is a threshold one with hyperplane (3,)=0. O
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Theorem 5.2. For any threshold self-dual monotonic Boolean function f (ﬁ)
essentially dependent on all its variables there exists a graph, for which func-
tion f (ﬁ) is characteristic.

Proof. Consider threshold self-dual monotonic Boolean function f (ﬁ), which
is essentially dependent on all its variables. Let D; be a fundamental matrix
of ones of function f (5) Due to Theorem 5.1, there exists vector Z for which
D; x # > 0. Since the first n rows of matrix D; form an identity matrix, the
first n inequalities in Dy x & > 0 set £ > 0. The rest of the rows of matrix
D;, by definition, correspond to lower ones of function f (ﬁ) Define constant
graph G(V, E) by defining set B = {b; = z;, @ = 1,...,n}. The length of
edge (i,7) is d(3,j) = b; + bj = =; + ;. Consider No-Depot Min-Max 2-

TSP on this graph. Let f (ﬁ) be a characteristic function of the graph. Due to

Statements 2.1 and 2.2 function f (,3) is monotonic and self-dual. Therefore,
the followmg condition satisfies each one ,81 (and each zero ,60 = ——,6’1) of
function f(8):

(B1,%) > 0.
Since D; x & > 0 and all the lower ones of function f (ﬁ) are among the rows
of matrix D;, every lower one of Boolean function f (,3) is a one of function

f (ﬁ) Because of monotonicity and self-duality of functions f (B) and f (,B)
and the fact, that any monotonic Boolean function is completely defined by the
set of lower ones, the equation

| 7B = £
is vélid for any binary ﬁ O

Note, that in the proof, constructed graph G(V, E) is sphttable

Consider the case when Boolean threshold function f (ﬁ) is independent of
some of its variables. The following statement is valid for this function:

Statement 5.3. If threshold function () is independent of the i*® variable,
and (ﬂ, %) = c is a threshold hyperplane for this function, then (ﬁ,g‘) = ¢

" where
! zj jFI

is also a threshold hyperplane of function f B)

Indeed, consider a one f; of function f (,3) 1t satisfies (ﬁl, Z) > c. Since
function f (ﬂ) is independent of the ! variable, there exists a one ﬂll of the
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function that differs from [7 by only the it h variable. Therefore, (ﬁ_i’, z)>c
Addmg inequalities (ﬂl, Z) > cand (ﬂl ,Z) = ¢, we get that 61 satisfies
(,31, 7) = c. Similarly, any zero fBo of function f (,B) satisfies (80,%) < c.

Therefore, (3, ) = c is a threshold hyperplane of function f (B). The reverse
statement appears straightaway:

Statement 5.4. If threshold Boolean function f (ﬁ) has threshold hyperplane
(B, %) = ¢, and z; = 0, then function f(B) is independent of the ith variable.

Definition 5.2. Central threshold hyperplane (ﬁ , &) = 0 of threshold Boolean
function f(0) is a reduced hyperplane, if for every variable, of which function
f(B) is independent, the corresponding component of vector T is zero.

A central threshold hyperplane of a Boolean function essentially dependent
on all its variables is a simple case of a reduced hyperplane. Due to Statements
3.1 and 5.3 and the definition of central threshold hyperplane, the following
statement is valid:

Statement 5.5. For any threshold self-dual Boolean function there exists a
reduced central threshold hyperplane.

We are ready to prove the main result of the chapter.

Theorem 5.3. For any threshold self-dual monotonic Boolean function f (ﬁ)
there exists a graph, for which function f(B) is characteristic.

Proof. The case with function f (B) essentially dependent on all its variables
has been considered in Theorem 5.2. Now we consider the case when function
f(B) is independent of some of its variables. Let Kindep = {1,...,k} bea
set of indexes of variables, on which the function f (ﬂ) does not depend and
Kdep {k+1,...,n} be aset of indexes of the variables, on which function
f(B) essentially depcnds Accordmg to Statement 5.5, there exists reduced
central threshold hyperplane (3,7) = 0 for function f (B). Define constant
graph G(V, E) by defining set B = {b; = y; i = 1,...,n}. The length of
edge (i,7) is
d(i,j) = bi + bj = yi + Y-

For any variable, on which function f (ﬁ) does not depend, the corresponding
component of 7 is zero. In compliance with the proof of Theorem 5.2, Boolean

function f (ﬁ) is a characteristic function for No-Depot Min-Max 2-TSP con-
sidered on graph G(V, E). O

The same as in the proof of Theorem 5.2, the obtained graph is splittable.
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6. Conclusion

The Multiple Traveling Salesmen Problem has many variations. In this work
we studied a No-Depot Min-Max formulation of 2-Traveling Salesmen Prob-
lem. We introduced a characteristic function for this class of problems. This
Boolean function is monotonic and self-dual for complete graphs with metric
distances. For an arbitrary monotonic threshold self-dual Boolean function we
have proven existence of a No-Depot Min-Max 2-Traveling Salesmen Prob-
lem, for which this function is characteristic.
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